các bạn ơi giải giùm mình với :
Cho A=1/1+2 + 1/1+2+3 + ... + 1/1+2+3+...+99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này cũng khó:
1/2! +2/3! +3/4! +... + 99/100!
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!)
=1 - 1/100! <1
Gọi số tự nhiên n. Ta có:
\(\frac{n-1}{n!}=\frac{n+1-1}{n!}=\frac{n+1}{n!}-\frac{1}{n!}=\frac{1}{\left(n-1\right)!}-\frac{1}{n!}\).
Thay n lần lượt bằng 2,3,...,100.Ta có A = \(\frac{1}{1!}-\frac{1}{100!}<1\Rightarrow A<1\)
câu nào dạng cũng giống nhau, ko biết 1 câu là ko giải đc toàn bộ
Ta có:
\(B=2\cdot\left(1\cdot99+2\cdot98+...+50\cdot50\right)-50\cdot50\)
\(=2\cdot\left(1\cdot99+2\cdot\left(99-1\right)+...+50\cdot\left(99-49\right)\right)-50\cdot50\)-
\(=2\cdot\left(1\cdot99+2\cdot99-1\cdot2+...+50\cdot99-49\cdot50\right)-50\cdot50\)
\(=2\cdot\left(\left(1\cdot99+2\cdot99+...+50\cdot99\right)-\left(1\cdot2+2\cdot3+...+49\cdot50\right)\right)-50\cdot50\)
\(=2\cdot\left(\frac{99\cdot50\cdot51}{2}-\frac{49\cdot50\cdot51}{3}\right)-50\cdot50\)
\(=2\cdot84575-2500\)
\(=166650\)
Vậy B=166650
A=1.99+2.98+3.97+...+97.3+98.2+99.1
A=1.99+2.(99−1)+3.(99−2)+...+98.(99−97)+99.(99−98)
A=1.99+2.99−1.2+3.99−2.3+98.99−97.98+99.99−98.99
=(1.99+2.99+3.99+...+98.99+99.99)−(1.2+2.3+3.4+...+97.98+98.99)
=99.(1+2+3+...+98+99)−(1.2+2.3+3.4+...+97.98+98.99)
=99.4950−(1.2+2.3+3.4+97.98+98.99)
Mà 1.2+2.3+3.4+...97.98+98.99
= 1/3 .[1.2+2.3.(4−1)+3.4.(5−2)+98.99.(100−97)]
=1/3.98.99.100
=323400
⇒A=99.4950−323400=166650
Làm trc cho 2 câu cuối
c) \(a^2-b^2-4a+4b\)
\(=\left(a+b\right)\left(a-b\right)-4\left(a-b\right)\)
\(=\left(a-b\right)\left[\left(a+b\right)-4\right]\)
d) \(a^2+2ab+b^2-2a-2b+1\)
\(=\left(a+b\right)^2-2\left(a+b\right)+1\)
\(=\left(a+b\right)\left[\left(a+b\right)-2\right]+1\)
\(a_{n-1}=\frac{1}{1+2+..+n}=\frac{2}{n\left(n+1\right)}=\frac{2}{n}-\frac{2}{n+1}\)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+99}=\frac{2}{2}-\frac{2}{3}+\frac{2}{3}-\frac{2}{4}+...+\frac{2}{99}-\frac{2}{100}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
chtt
tặng cho mk vài li-ke nha