K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2020

\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(1^2-2^2+3^2-....-100^2=\left(1^2-2^2\right)+...+\left(99^2-100^2\right)=\)

\(-1\left(1+2\right)+\left(-1\right)\left(3+4\right)+...+\left(-1\right)\left(99+100\right)=\frac{-100.101}{2}=-5050\)

12 tháng 10 2021

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

28 tháng 11 2021
Lol .ngudoots
29 tháng 6 2017

(x+y+z)^3 - x^3 - y^3 - z^3

\(=x^3+y^3+z^3+3xy\left(x+y\right)+3yz\left(y+z\right)+3xz\left(x+z\right)-x^3-y^3-z^3\)

\(=3x^2y+3xy^2+3y^2z+3yz^2+3x^2z+3xz^2\)

\(=3\left(x^2y+xy^2+y^2z+yz^2+x^2z+xz^2\right)\)

29 tháng 6 2017

3.(2^2 +1 ).(2^4 +1).(2^8 +1).(2^16 +1)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)

24 tháng 10 2021

Bài 6:

c: \(9x^2+6x+1=\left(3x+1\right)^2\)

d: \(4x^2-9=\left(2x-3\right)\left(2x+3\right)\)

e: \(x^3+27=\left(x+3\right)\left(x^2-3x+9\right)\)

NV
26 tháng 3 2023

1.

\(A=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+4\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{2x-9-\left(x^2-9\right)+\left(2x^2-8\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x+4}{x-3}\)

b.

\(A=2\Rightarrow\dfrac{x+4}{x-3}=2\Rightarrow x+4=2\left(x-3\right)\)

\(\Rightarrow x=10\) (thỏa mãn)

2.

\(x^4+2x^2y+y^2-9=\left(x^2+y\right)^2-3^2=\left(x^2+y-3\right)\left(x^2+y+3\right)\)

26 tháng 3 2023

Em cảm ơn ạ

15 tháng 8 2016

Phân tích đa thức thành nhân tử

27y2-9(x+y)2=\(9\left(3y^2-\left(x+y\right)^2\right)\)

=\(9\left(\sqrt{3}y+x+y\right)\left(\sqrt{3}y-x-y\right)\)

Rút gọn biểu thức

(2x4-x3+3x2): (-1/3x)

=\(\frac{2x^4-x^3+3x^2}{-\frac{1}{3x}}=3x^3\left(-2x^2+x-3\right)\)

26 tháng 11 2021

\(1,\Leftrightarrow x=10\\ 2,=x^2-4x+4-x^2+4x=4\\ 3,=\left(x+y\right)^2-49=\left(x+y+7\right)\left(x+y-7\right)\)

26 tháng 11 2021

Câu 1 :

\(2x-20=0\)

\(2x=0+20\)

\(2x=20\)

\(2.x=20\)

\(x=20:2\)

\(x=10\)

 

 

24 tháng 9 2021

\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

31 tháng 12 2018

\(\frac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}=\frac{\left(x^4-x^2-2\right)+\left(x^3-2x\right)}{\left(x^4-x^2-2\right)+\left(2x^3-4x\right)}\)

\(=\frac{\left(x^2-2\right)\left(x^2+1\right)+x\left(x^2-2\right)}{\left(x^2-2\right)\left(x^2+1\right)+2x\left(x^2-2\right)}=\frac{\left(x^2-2\right)\left(x^2+x+1\right)}{\left(x^2-2\right)\left(x^2+2x+1\right)}\)

\(=\frac{x^2+x+1}{\left(x+1\right)^2}\)

31 tháng 12 2018

\(F\left(x\right)=\frac{x^4+x^3-x^2-2x-2}{x^4+2x^3-x^2-4x-2}\)

\(=\frac{\left(x^4+x^3+x^2\right)-2x^2-2x-2}{\left(x^4+2x^3+x^2\right)-\left(2x^2+4x+2\right)}\)

\(=\frac{x^2\left(x^2+x+1\right)-2\left(x^2+x+1\right)}{x^2\left(x^2+2x+1\right)-2\left(x^2+2x+1\right)}=\frac{x^2+x+1}{x^2+2x+1}\)

24 tháng 10 2021

1: \(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x+5\right)+\left(2x+5\right)^2\)

\(=\left(2x+3-2x-5\right)^2\)

=4