Cho các số thực dương \(x;y\) thỏa mãn \(\frac{y+2}{3x+3}=\frac{\sqrt{3x+3}+2}{\sqrt{y+2}+2}\)
Tìm giá trị nhỏ nhất của biểu thức: \(Q=x^2+y^2-3y-2x-3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có
Khi đó
Vậy giá trị nhỏ nhất của biểu thức P là 3 + 2 2
Ta có:
\(VT=\sqrt{x+z}\sqrt{\dfrac{x}{\left(x+y\right)\left(x+z\right)}}+\sqrt{x+y}\sqrt{\dfrac{y}{\left(x+y\right)\left(y+z\right)}}+\sqrt{y+z}\sqrt{\dfrac{z}{\left(x+z\right)\left(y+z\right)}}\)
\(\Rightarrow VT^2\le\left(x+z+x+y+y+z\right)\left(\dfrac{x}{\left(x+y\right)\left(x+z\right)}+\dfrac{y}{\left(x+y\right)\left(y+z\right)}+\dfrac{z}{\left(x+z\right)\left(y+z\right)}\right)\)
\(\Rightarrow VT^2\le\dfrac{4\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Mặt khác ta có:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)
\(=\left(x+y+z\right)\left(xy+yz+zx\right)-\sqrt[3]{xyz}.\sqrt[3]{xy.yz.zx}\)
\(\ge\left(x+y+z\right)\left(xy+yz+zx\right)-\dfrac{1}{3}\left(x+y+z\right).\dfrac{1}{3}\left(xy+yz+zx\right)\)
\(=\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
\(\Rightarrow VT^2\le\dfrac{4\left(x+y+z\right)\left(xy+yz+zx\right)}{\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\dfrac{9}{2}\)
\(\Rightarrow VT\le\dfrac{3\sqrt{2}}{2}\) (đpcm)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z\)
Đáp án D
Đặt log 25 x 2 = log 15 y = log 9 x + y 4 = t ⇒ x 2 = 25 t y = 15 t x + y = 4 . 9 t
⇒ 2 . 15 t + 15 t = 4 . 9 t x y = 2 5 3 t ⇒ 2 . 5 3 2 t + 5 3 t - 4 = 0 ⇔ [ 5 3 t = - 1 + 33 4 5 3 t = - 1 - 33 4
⇒ 5 3 t = - 1 + 33 4 ⇒ x y = - 1 + 33 4 ⇒ a = - 1 b = 33 ⇒ a + b = 32 .
Lời giải:
Đặt $\sqrt{y+2}=a; \sqrt{3x+3}=b(a,b>0)$
Theo bài ra ta có: \(\frac{a^2}{b^2}=\frac{b+2}{a+2}\Rightarrow a^3+2a^2=b^3+2b^2\)
\(\Leftrightarrow (a^3-b^3)+2(a^2-b^2)=0\)
\(\Leftrightarrow (a-b)(a^2+ab+b^2+2a+2b)=0\)
Vì $a,b>0$ nên $a^2+ab+b^2+2a+2b>0$
Do đó: $a-b=0\Rightarrow a=b\Rightarrow a^2=b^2\Leftrightarrow y=3x+1$
Thay vào biểu thức:
$Q=x^2+(3x+1)^2-3(3x+1)-2x-3$
$=10x^2-5x-5=10(x^2-\frac{1}{2}x+\frac{1}{4^2})-\frac{45}{8}$
$=10(x-\frac{1}{4})^2-\frac{45}{8}\geq \frac{-45}{8}$
Vậy GTNN của $Q$ là $\frac{-45}{8}$ khi $x=\frac{1}{4}$ và $y=\frac{7}{4}$