Câu 1: lập pt chính tắc của (E) biết (E) đi qua M (3/căn 5; 4/căn 5) và tam giác MF1F2 vuông tại M?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương trình chính tắc của elip có dạng:
Do Elip đi qua nên:
Lại có :
Như vậy ta có hệ điều kiện:
Giải hệ ta được:
\(2c=8\Rightarrow c=4\)
Gọi pt elip có dạng: \(\frac{x^2}{a^2}+\frac{y^2}{a^2-c^2}=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{a^2-16}=1\)
Do elip qua M nên:
\(\frac{15}{a^2}+\frac{1}{a^2-16}=1\)
\(\Leftrightarrow15\left(a^2-16\right)+a^2=a^2\left(a^2-16\right)\)
\(\Leftrightarrow a^4-32a^2+240=0\Rightarrow\left[{}\begin{matrix}a^2=20\\a^2=12< 16\left(l\right)\end{matrix}\right.\) \(\Rightarrow b^2=a^2-c^2=4\)
Phương trình (E): \(\frac{x^2}{20}+\frac{y^2}{4}=1\)
Gọi Elip cần tìm có dạng : (E) :
Vậy phương trình chính tắc của elip:
Elip có phương trình chính tắc là: \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b > 0} \right)\)
Do Elip đi qua điểm M(0;3) nên \(b = 3\)
Điểm \(N\left( {3; - \frac{{12}}{5}} \right)\) thuộc (E) nên ta có: \(\frac{{{3^2}}}{{{a^2}}} + \frac{{{{\left( { - \frac{{12}}{5}} \right)}^2}}}{{{3^2}}} = 1 \Leftrightarrow a = 5\)
Vậy Elip có phương trình chính tắc là: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\)
Gọi pt (E) có dạng \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)
\(e=\frac{c}{a}=\frac{2}{3}\Rightarrow c=\frac{2a}{3}\Rightarrow c^2=\frac{4a^2}{9}\)
\(\Rightarrow b^2=a^2-c^2=\frac{5a^2}{9}\)
Pt (E) có dạng: \(\frac{x^2}{a^2}+\frac{\frac{9}{5}y^2}{a^2}=1\Leftrightarrow a^2=x^2+\frac{9}{5}y^2\)
Thay tọa độ M vào ta được:
\(a^2=2^2+\frac{9}{5}\left(\frac{5}{2}\right)^2=\frac{61}{4}\Rightarrow b^2=\frac{305}{36}\)
Pt (E): \(\frac{x^2}{\frac{61}{4}}+\frac{y^2}{\frac{305}{36}}=1\)
1: (E): x^2/a^2+y^2/b^2=1
Thay x=0 và y=3 vào (E), ta được:
3^2/b^2=1
=>b^2=9
=>b=3
F2(5;0)
=>c=5
=>\(\sqrt{a^2-9}=5\)
=>a^2-9=25
=>a^2=34
=>\(a=\sqrt{34}\)
=>x^2/34+y^2/9=1
2: Thay x=7 và y=0 vào (E), ta được:
7^2/a^2+0^2/b^2=0
=>a^2=49
=>a=7
Thay x=0 và y=3 vào (E), ta được:
0^2/a^2+3^2/b^2=1
=>b^2=9
=>b=3
=>(E): x^2/49+y^2/9=1
3: Thay x=0 và y=1 vào (E), ta được:
1/y^2=1
=>y=1
=>(E): x^2/a^2+y^2/1=1
Thay x=1 và y=căn 3/2 vào (E), ta được:
1^2/a^2+3/4=1
=>1/a^2=1/4
=>a^2=4
=>a=2
=>(E); x^2/4+y^2/1=1