a^4+b^4+c^4+d^4>a.b.c.d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a+b = x , c+d = y
Ta có : \(\left(x-y\right)^2\ge0\) với mọi x , y
\(\Leftrightarrow\) \(x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\) \(x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow\) \(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\) \(\left(\dfrac{x+y}{2}\right)^2\ge xy\)
\(\Leftrightarrow\) \(\dfrac{\left(x+y\right)^4}{16}\ge x^2y^2\)
\(\Leftrightarrow\) \(\dfrac{\left(a+b+c+d\right)^4}{16}\ge\left(a+b\right)^2\left(c+d\right)^2\ge4ab.4cd\) ( vi (a+b)^2 \(\ge\) 4ab )
\(\Leftrightarrow\) \(\dfrac{\left(a+b+c+d\right)^4}{16}\ge16abcd\)
\(\Leftrightarrow\) \(\dfrac{\left(a+b+c+d\right)^4}{256}\ge abcd\)
\(\Leftrightarrow\) \(\left(\dfrac{a+b+c+d}{4}\right)^4\ge abcd\)
Vay \(\left(\dfrac{a+b+c+d}{4}\right)^4\ge abcd\) .
Đường link : Câu hỏi của Hà Lê - Toán lớp 9 - Học toán với OnlineMath
Ta có : a4 + b4 \(\ge\)2a2b2 ; b4 + c4 \(\ge\)2b2c2 ; a4 + c4 \(\ge\)2a2c2
\(\Rightarrow\)a4 + b4 + c4 \(\ge\)a2b2 + b2c2 + a2c2 ( 1 )
Lại có : a2b2 + b2c2 \(\ge\)2b2ac ; b2c2 + a2c2 \(\ge\)2c2ab ; a2b2 + a2c2 \(\ge\)2a2bc
\(\Rightarrow\)a2b2 + b2c2 + a2c2 \(\ge\)abc ( a + b + c ) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a4 + b4 + c4 \(\ge\) abc ( a + b + c )
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
Tương tự , b4 + c4 + d4 \(\ge\)bcd ( b + c + d ) ; a4 + b4 + d4 \(\ge\)abd ( a + b + d ) ; c4 + d4 + a4 \(\ge\)acd ( a + c + d )
\(\frac{1}{a^4+b^4+c^4+abcd}\le\frac{1}{abc\left(a+b+c\right)+abcd}=\frac{abcd}{abc\left(a+b+c+d\right)}=\frac{d}{a+b+c+d}\)
\(\frac{1}{b^4+c^4+d^4+abcd}\le\frac{a}{a+b+c+d}\); \(\frac{1}{a^4+b^4+d^4+abcd}\le\frac{c}{a+b+c+d}\)
\(\frac{1}{c^4+d^4+a^4+abcd}\le\frac{b}{a+b+c+d}\)
Cộng từng vế theo vế , ta được :
A \(\le\)1 ( đặt A = biểu thức ấy nhé )
Vậy GTLN A = 1 \(\Leftrightarrow\)a = b = c = d = 1
a) Ta có: \(a^2+1\ge2a\)
Tường tự \(b^2+1\ge2b\); \(c^2+1\ge2c\)
Vì \(a^2+1\ge0\);\(b^2+1\ge0\);\(c^2+1\ge0\)nên ta:
Nhân vế theo vế của 3 bất đẳng thức cùng chiều ta được điều phải chứng minh
b) \(a^2+2^2\ge4a\)bạn làm tương tự như câu a) là ra nha!
Áp dụng BĐT cauchy-schwarz :
\(VT=\frac{a^4}{ab+ac+ad}+\frac{b^4}{ab+bc+bd}+\frac{c^4}{cd+ac+bc}+\frac{d^4}{ad+bd+cd}\)
\(\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\)
Mà \(3\left(a^2+b^2+c^2+d^2\right)\ge2\left(ab+ac+ad+bc+bd+cd\right)\)( dễ dàng chứng minh nó bằng AM-GM)
nên \(VT\ge\frac{a^2+b^2+c^2+d^2}{3}\)
Áp dụng BĐT AM-GM: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd;d^2+a^2\ge2ad\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge ab+bc+cd+da=1\)
do đó \(VT\ge\frac{1}{3}\)
Dấu''='' xảy ra khi \(a=b=c=d=\frac{1}{2}\)
Áp dụng Côsi:
\(a^4+a^4+a^4+1\ge4\sqrt[4]{\left(a^4\right)^3}=4a^3\)
\(\Rightarrow3\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^3+b^3+c^3+d^3\right)-1\)
Ta chứng minh: \(a^3+b^3+c^3+d^3\ge4\)
Theo Côsi: \(a^3+1+1\ge3\sqrt[3]{a^3}=3a\)
\(\Rightarrow a^3+b^3+c^3+d^3+2.4\ge3\left(a+b+c+d\right)=3.4\)
\(\Rightarrow a^3+b^3+c^3+d^3\ge4\)
\(\Rightarrow3\left(a^4+b^4+c^4+d^4\right)\ge4\left(a^3+b^3+c^3+d^3\right)-4\ge3\left(a^3+b^3+c^3+d^3\right)\)
\(\Rightarrow a^4+b^4+c^4+d^4\ge a^3+b^3+c^3+d^3\)