K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2020

giải phương trình

NV
20 tháng 6 2020

\(\Leftrightarrow x^3-3x^2+2x+m^2\left(x-1\right)+2m\left(x^2-x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-2x\right)+m^2\left(x-1\right)+2mx\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2\left(m-1\right)x+m^2\right)=0\)

Tới đây làm gì thì làm

5 tháng 12 2017

Đáp án C

27 tháng 4 2019

Chọn C

11 tháng 5 2018

3 tháng 3 2016

bài này sử dụng định lí vi-ét nha

25 tháng 6 2017

19 tháng 12 2018

a) y′ = 3 x 2  + 2(m + 3)x + m

y′ = 0 ⇔ 3 x 2  + 2(m + 3)x + m = 0

Hàm số đạt cực trị tại x = 1 thì:

y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3

Khi đó,

y′ = 3 x 2  – 3;

y′′ = 6x;

y′′(1) = 6 > 0;

Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.

b) y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = −(m + 1)2 + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − ( m + 1 ) 2  + 4 = 0 ⇔ ( m + 1 ) 2  = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

2 tháng 12 2018

20 tháng 8 2019

23 tháng 9 2018

y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = − m + 1 2  + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − m + 1 2  + 4 = 0 ⇔  m + 1 2 = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

7 tháng 4 2023

Để pt có 2 nghiệm pb thì \(\Delta\ge0\)

\(\Leftrightarrow\Delta\ge0\)

Ta có : \(\Delta=b^2-4ac=\left[-\left(2m-3\right)\right]^2-4\left(-m+2\right)\ge0\)

\(\Leftrightarrow\left(2m-3\right)^2+4m-8\ge0\)

\(\Leftrightarrow4m^2-12m+9+4m-8\ge0\)

\(\Leftrightarrow4m^2-8m+1\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{2+\sqrt{3}}{2}\\m=\dfrac{2-\sqrt{3}}{2}\end{matrix}\right.\)