(b+c)/a + (c+a)/b + (a+b)/c >= 4 (a/(b+c) + b/(c+a) + c/(a+b))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)
\(\Leftrightarrow a^2-a+\frac{1}{4}+b^2-b+\frac{1}{4}+c^2-c+\frac{1}{4}\ge0\)
\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2+\left(b-\frac{1}{2}\right)^2+\left(c-\frac{1}{2}\right)^2\ge0\)
Xảy ra khi \(a=b=c=\frac{1}{2}\)
b)Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1+1\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)
\(\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}=\frac{\frac{\left(a+b\right)^2}{4}}{2}>\frac{\frac{1}{4}}{2}=\frac{1}{8}\)
c)\(BDT\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\)
Khi a=b
a)\(A=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(A=1+\dfrac{a}{b}+\dfrac{b}{a}+1\)
Ta chứng minh bđt:\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)(1)
\(\Leftrightarrow\dfrac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)
Áp dụng\(\Rightarrow A\ge1+2+1=4\left(\text{đ}pcm\right)\)
b)\(B=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
\(B=\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}\)
\(B=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\)
Áp dụng bđt (1)\(\Rightarrow B\ge2+2+2=6\left(\text{đ}pcm\right)\)
Ta có : \(VT=\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\ge\frac{b+c+c+a+a+b}{a+b+c}\)
\(=\frac{2\left(a+b+c\right)}{\left(a+b+c\right)}=2\)
Lại có : \(VP=4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\ge4\left(\frac{a+b+c}{b+c+c+a+a+b}\right)\)
\(=4\left(\frac{\left(a+b+c\right)}{2\left(a+b+c\right)}\right)=4.\frac{1}{2}=2\)
Từ đó suy ra đpcm
Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(VT=\Sigma\left(\frac{b}{a}+\frac{b}{c}\right)=\Sigma b\left(\frac{1}{a}+\frac{1}{c}\right)\ge\Sigma\frac{4b}{a+c}=VP\)
Bài này có gì khó đâu nhỉ? *.*