phải là 3^2+3^3+..+3^100 chia hết cho 120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(A=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)=\)
\(=13\left(3+3^4+3^7+...+3^{118}\right)⋮13\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{117}\left(1+3+3^2+3^3\right)=\)
\(A=40\left(3+3^5+3^9+...+3^{117}\right)⋮40\)
b/
\(A=3+3^2\left(1+3+3^2+...+3^{118}\right)=\)
\(=3+9\left(1+3+3^2+...+3^{118}\right)\) chia 9 dư 3 nên A không chia hết cho 9
c/
\(3A=3^2+3^3+3^4+...+3^{121}\)
\(\Rightarrow2A=3A-A=3^{121}-3\Rightarrow2A+3=3^{121}\)
\(2A+3=3^{121}=3.3^{120}=3.\left(3^4\right)^{30}=3.81^{30}\) có tận cùng là 3 nên 2A+3 không phải là số chính phương
Cho 3+3^2+3^3+3^4+.....+3^100 là A
A=3^1+3^2+3^3+...+3^100
Vay A chia het cho 120
Lời giải:
$S=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+....+(3^{97}+3^{98}+3^{99}+3^{100})$
$=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+....+3^{97}(1+3+3^2+3^3)$
$=(1+3+3^2+3^3)(3+3^5+...+3^{97})$
$=40(3+3^5+...+3^{97})$
$=40.3(1+3^4+....+3^{96})$
$=120(1+3^4+...+3^{96})\vdots 120$
M=3+3^2+3^3+...+3^100 chia hết cho 120=>M chia hết cho 10 x12=>M chia hết cho 10 và 12 =>M=(3+3^3)+(3^2+3^4)+...+(3^98+3^100) =>M=3(1+3^2)+3^2(1+3^2)+...+3^98(1+3^2) =>M=10(3+3^2+...+3^98)chia hết cho 10 =>M=(3+3^2)+...+(3^99+3^100) =>M=(3+3^2)+...+3^98(3+3^2) =>M=12+...+3^98.12 =>M=12.(1+...+3^98)chia hết cho 12 =>Vậy M chia hết cho 120 Nhớ K mình nhé!
B=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+......+(3^97+3^98+3^99+3^100)
B=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+.......+3^97(1+3+3^2+3^3)
B=3.40+3^5.40+......+3^97.40
B=40.3.(1+3+3^2+.......+3^98+3^99)
B=120.(1+3+3^2+.........+3^98+3^99)
Suy ra B chia hết cho 120
cho B=3+3^2+3^3+...+3^100.chứng minh rằng B chia hết cho 120
Ta có :
A=3+3^2+3^3+...+3^100
B=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+...+(3^97+3^98+3^99+3^100)
B=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+....+3^97(1+3+3^2+3^3)
B=3.40+3^5.40+....+3^97.40
B=40.(3+3^5+...+3^97)chia hết cho 40
Vì B có 25 số lũy thừa cơ số 3 nên M chia hết cho 3.
Suy ra, B chia hết cho 40 và 3 tức là B chia hết cho 120
vậy A chia hết cho 120
Ta có : A = 3 + 32 + 33 + 34 + ...... + 3100
=> A = (3 + 32 + 33 + 34) + ...... + (397 + 398 + 399 + 3100)
=> A = (3 + 32 + 33 + 34) + ...... + 396(3 + 32 + 33 + 34)
=> A = 120 + ..... + 396.120
=> A = 120(1 + .... + 396) chia hết cho 120
A=\(3+3^2+3^3+3^4+...+3^{100}\)
=\(\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
=\(\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{98}\left(3+3^2\right)\)
=\(\left(3+3^2\right)\left(1+3^2+3^4+...+3^{98}\right)\)
=\(12\left(1+3^2+3^4+...+3^{98}\right)\)
Vì \(12⋮12\)=>\(12\left(1+3^2+3^4+...+3^{98}\right)⋮12\)
=>\(A⋮12\)
Vậy \(A⋮12\)
Ta có ; \(A=3+3^2+3^3+.....+3^{100}\)
\(=\left(3+3^2+3^3+3^4+3^5\right)\)
3^2+3^3+3^4+.............+3^100
=(3^2+3^3+3^4+3^5)+(3^6+3^7+3^8+3^9)+............+(3^97+3^98+3^99+3^100)
=3*(3+3^2+3^3+3^4)+3^5*(3+3^2+3^3+3^4)+............+3^96*(3+3^2+3^3+3^4)
=3*120+3^5*120+...........+3^96*120
=120*(3+3^5+...........+3^96)
vì 120 chia hết cho 120 nên:120*(3+3^5+...........+3^96) chia hết cho 120
vậy 3^2+3^3+3^4+..............+3^100 chia hết cho 120