\(10/\frac{x}{x-1}-\frac{2x+6}{x+1}=\frac{2}{x^2-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{2x+4}{10}+\frac{2-x}{15}=\frac{\left(2x+4\right).3}{10.3}+\frac{\left(2-x\right).2}{15.2}\)
\(=\frac{6x+12}{30}+\frac{4-2x}{30}=\frac{6x+12+4-2x}{30}=\frac{4x+16}{30}\)
\(=\frac{4.\left(x+4\right)}{30}=\frac{2\left(x+4\right)}{15}\)
\(b,\frac{3x}{10}+\frac{2x-1}{15}+\frac{2-x}{20}=\frac{3x.6}{10.6}+\frac{\left(2x-1\right).4}{15.4}+\frac{\left(2-x\right).3}{20.3}\)
\(=\frac{18x}{60}+\frac{8x-4}{60}+\frac{6-3x}{60}=\frac{18x+8x-4+6-3x}{60}=\frac{23x+2}{60}\)
\(c,\frac{x+1}{2x-2}+\frac{x^2+3}{2-2x^2}=\frac{x+1}{2\left(x-1\right)}+\frac{x^2+3}{2\left(1-x^2\right)}=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x^2-1\right)}\)
\(=\frac{x+1}{2\left(x-1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{\left(x+1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}+\frac{-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}=\frac{2x-2}{2\left(x-1\right)\left(x+1\right)}=\frac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\)\(=\frac{1}{x+1}\)
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
a) Đk: x \(\ne\)-2
Ta có: \(\frac{2}{x+2}-\frac{2x^2+16}{x^2+8}=\frac{5}{x^2-2x+4}\)
<=> \(\frac{2\left(x^2-2x+4\right)-\left(2x^2+16\right)}{\left(x+2\right)\left(x^2-2x+4\right)}=\frac{5\left(x+2\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)
<=> 2x2 - 4x + 8 - 2x2 - 16 = 5x + 10
<=> -4x - 8 = 5x + 10
<=> -4x - 5x = 10 + 8
<=> -9x = 18
<=> x = -2 (ktm)
=> pt vô nghiệm
b) Đk: x \(\ne\)2; x \(\ne\)-3
Ta có: \(\frac{1}{x-2}-\frac{6}{x+3}=\frac{5}{6-x^2-x}\)
<=> \(\frac{x+3}{\left(x-2\right)\left(x+3\right)}-\frac{6\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{5}{\left(x-2\right)\left(x+3\right)}\)
<=> x + 3 - 6x + 12 = -5
<=> -5x = -5 - 15
<=> -5x = -20
<=> x = 4
vậy S = {4}
c) Đk: x \(\ne\)8; x \(\ne\)9; x \(\ne\)10; x \(\ne\)11
Ta có: \(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)
<=> \(\left(\frac{8}{x-8}+1\right)+\left(\frac{11}{x-11}+1\right)=\left(\frac{9}{x-9}+1\right)+\left(\frac{10}{x-10}+1\right)\)
<=> \(\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)
<=> \(x\left(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\right)=0\)
<=> x = 0 (vì \(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\ne0\)
Vậy S = {0}
ĐK: x khác 1 và - 1
\(\frac{x}{x-1}-\frac{2x+6}{x+1}=\frac{2}{x^2-1}\)
<=> \(\frac{x\left(x+1\right)}{x^2-1}-\frac{\left(2x+6\right)\left(x-1\right)}{x^2-1}=\frac{2}{x^2-1}\)
<=> \(x^2+x-\left(2x^2+6x-2x-6\right)=2\)
<=> \(-x^2-3x+4=0\)
<=> \(x^2+3x-4=0\)
<=> \(x^2-x+4x-4=0\)
<=> \(x\left(x-1\right)+4\left(x-1\right)=0\)
<=> \(\left(x-1\right)\left(x+4\right)=0\)
<=> x = 1 ( loại ) hoặc x = -4 thỏa mãn
<=> x = -4
Vậy x = -4.
\(\frac{x}{x-1}-\frac{2x+6}{x+1}=\frac{2}{x^2-1}\) ( đkxđ : \(x\ne\pm1\))
<=> \(\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{\left(2x+6\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{2}{\left(x-1\right)\left(x+1\right)}\)
<=> \(x^2+x-\left(2x^2-2x+6x-6\right)=2\)
<=> \(x^2+x-2x^2+2x-6x+6-2=0\)
<=> \(-x^2-3x+4=0\)
<=> \(\left(1-x\right)\left(x+4\right)=0\)
<=> 1 - x = 0 hoặc x + 4 = 0
<=> x = 1 ( loại vì k tmđk ) hoặc x = -4
Vậy x = -4