Chứng minh :
A = 1/2^2 + 1/2^3 + 1/2^4 + ... + 1/2^2020 < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/1^2 + 1/2^2 + 1/3^2 + ... + 1/2020^2
1/2^2 < 1/1.2
1/3^2 < 1/2.3
...
1/2020^2 < 1/2019.2020
=> A < 1 + 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/2019*2020
=> A < 1 + 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2019 - 1/2020
=> A < 2 - 1/2020
=> A < 4039/2020 < 7/4
=> a < 7/4
Ta có \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\)
=>\(\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2}\left(\frac{1}{n\left(n+1\right)}\right)=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
Áp dụng ta có \(\frac{1}{5}=\frac{1}{1^2+2^2}< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{2}\right)\)
\(\frac{1}{13}=\frac{1}{2^2+3^2}< \frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}\right)\)
..................................................................
\(\frac{1}{2019^2+2020^2}< \frac{1}{2}\left(\frac{1}{2019}-\frac{1}{2020}\right)\)
=> \(VT< \frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{2019}-\frac{1}{2020}\right)=\frac{1}{2}\left(1-\frac{1}{2020}\right)< \frac{1}{2}\)(ĐPCM)
nhận xét
1/2 < 1 ; 2/3 < 1 ; 3/4 < 1 ; ... ; 2019/2020 <1.
vậy 1/2 + 2/3 + 3/4 + ...+2019/2020 <1
\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^5}+...+\frac{2020}{5^{2020}}\)
\(\Rightarrow5A=1+\frac{2}{5}+\frac{3}{5^2}+\frac{4}{5^3}+...+\frac{2020}{5^{2019}}\)
\(\Rightarrow5A-A=4A=1+\left(\frac{2}{5}-\frac{1}{5}\right)+\left(\frac{3}{5^2}-\frac{2}{5^2}\right)+...+\left(\frac{2020}{5^{2019}}-\frac{2019}{5^{2019}}\right)-\frac{2020}{5^{2020}}\)
\(\Leftrightarrow4A=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}-\frac{2020}{5^{2020}}\)
\(B=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)
\(\Rightarrow5B=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)
\(\Rightarrow4B=1-\frac{1}{5^{2019}}\)
\(\Rightarrow B=\frac{1}{4}-\frac{1}{4.5^{2019}}\)
\(\Rightarrow4A=1+B-\frac{2020}{5^{2020}}\)
\(\Rightarrow A=\frac{5}{16}-\frac{1}{5^{2019}}\left(\frac{1}{4}+\frac{2020}{5}\right)=\frac{5}{16}-\frac{1617}{4.5^{2019}}\)
\(16>\frac{1617}{4.5^{2019}}\Rightarrow A=\frac{1}{4}+\left(\frac{1}{16}-\frac{1617}{4.5^{2019}}\right)>\frac{1}{4}\)
\(\frac{5}{16}< \frac{1}{3}\Rightarrow A< \frac{1}{3}\)
\(\Rightarrow\frac{1}{4}< A< \frac{1}{3}\left(Đpcm\right)\)
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
\(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2020}}\)
=> \(2A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2019}}\)
=> 2A - A = \(\frac{1}{2}-\frac{1}{2^{2020}}< \frac{1}{2}< 1\)
=> A < 1.