OLM ưu đãi đặc biệt gói SVIP 18 THÁNG dành cho nhà trường, đăng kí ngay!
Tham gia chương tình "Học kỳ rực rỡ" cùng OLM cơ hội nhận quà lên tới 2.000.000Đ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm a,b biết
\( {a \over b} = {1 \over 2}\),a.b=2(a+b)
Tìm các số a, b, C biết
\(a = {2b^2 \over 1+ b^2}\) , \(b = {2c^2 \over 1+c^2}\)
\(c = { 2a^2 \over 1+a^2}\)
\(P = ({1\ \over \sqrt{a}-2}-{1\ \over \sqrt{a}}):({\sqrt{a}-1\ \over \sqrt{a}-2}-{\sqrt{a}+2\ \over \sqrt{a}+1})\)
a, Tìm điều kiện xác định và rút gọn biểu thức P
b, Tìm giá trị của P biết \(a = 3+ 2\sqrt{2} \)
what: là j
???????
Cho biểu thức A= \({ 1 \over x-1} - {x^2-x+3 \over X^3 - 1} và B = {x^2+2 \over X^2+x+1} \) Với 0 < x Khác 9
a) Rút gọn A
b) Biết P= A : (1 - B). Tìm x để P < 1
cho a, b là các số dương biết a+b< 4 \ over 3 . Tìm Min P = a+b+1 \ over a +1 \ over b
Tìm x để biểu thức sau có giá trị nguyên \({5\over \sqrt{2x+1}+2}\)
Cho a,b,c là 3 số khác 0. Biết\({bz-cy\over a} = {cx-az\over b} = {ay-bx\over c}\)
Chứng minh rằng \({x\over a}= {y\over b}= {z\over c}\)
Bài 1: cho a,b,c khác đôi một\({1 \over a} + {1 \over b} + {1 \over c}= 0\)
Rút gọn các biểu thức
\(M = {1 \over a^2+2bc} + {1 \over b^2+2ac} + {1 \over c^2+2ab}\)
\(N = {bc \over a^2+2bc}+ {ca \over b^2+2ac} + {ab \over c^2+2ab}\)
Bài 2: Cho \({x \over a} + {y \over b} + {z \over c}=0 \) và \({a \over x} + {b \over y} + {c \over z}= 2\)
Chứng Minh Rằng \({a^2 \over x^2} + {b^2 \over y^2} + {c^2 \over z}= 4 \)
Bài 1:Tính
a) A= (-3)+(-6)+(-9)+...+(-90)
b) \(B = {3\over 5.7}+{3\over 7.9}+{3\over 9.11}+...+{3\over97.99}\)
Bài 2:
a)So sánh: \( A = {15^30-1 \over 15^29-1} và B= {15^31-1\over 15^30-1}\)
b)Tìm chữ số a, b biết: 4a5b \(⋮\)4, 4a5b : 3 dư2
Bài 3:Tính A/B:
\(A = {1\over2}+{1\over3}+{1\over4}+...+{1\over308}+{1\over309} \)
\(B = { 308\over1}+{ 307\over 2}+{ 306\over 3}+...+{ 3\over306}+{ 2\over 307}+{ 3\over 308}\)
cho ba số abc thỏa mãn \({a\over b+c} + {b\over a+c} + {c\over b+a} = 1\)chứng minh \({a^2\over b+c} + {b^2\over a+c} + {c^2\over b+a} = 0\)