Tính diện tích tam giác ABC biết A(3;-4),B(1;5),C(3;1).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Diện tích tam giác ABC = 1/2 x AH x BC
Diện tích tam giác ABE = 1/2 x AH x BE
= 1/2 x AH x 2/3 BC
= 1/2 x AH x BC x 2/3
= Diện tích tam giác ABC x 2/3
Vậy: Diện tích tam giác ABE = 2/3 diện tích tam giác ABC.
b) Vì chiều cao DE có D là trung điểm nên Diện tích tam giác ABE = 2 lần diện tích tam giác BDE
= 12 x 2
= 24
Diện tích tam giác ABC = 24 : 2/3
= 36
c) Diện tích hình tứ giác ADEC là: 36 - 24 = 12 ( cm vuông)
Đáp số: ...........................
Gợi ý:
A) Diện tích tam giác ABC
- Gọi S là diện tích tam giác ABC, h là độ cao của tam giác ABC kẻ từ đỉnh B xuống AC.
- Theo định lý diện tích tam giác, ta có: S = (1/2)AC.h
- Theo giả thiết, ta có: AN = (2/3)NC, suy ra AC = AN + NC = (2/3)NC + NC = (5/3)NC
- Do đó, S = (1/2).(5/3)NC.h = (5/6)NC.h
- Gọi S1 là diện tích tam giác ABM, h1 là độ cao của tam giác ABM kẻ từ đỉnh B xuống AM.
- Theo định lý diện tích tam giác, ta có: S1 = (1/2)AM.h1
- Theo giả thiết, ta có: S1 = 30cm2
- Do M là điểm nằm trên AC, nên AM = AN + NM = (2/3)NC + NM
- Do đó, S1 = (1/2).[(2/3)NC + NM].h1 = 30cm2
- Ta có hai phương trình với hai ẩn số NC và h1, ta có thể giải hệ phương trình này để tìm được NC và h1.
- Sau khi tìm được NC và h1, ta có thể thay vào công thức S = (5/6)NC.h để tính được diện tích tam giác ABC.
B) Diện tích tam giác ABN
- Gọi S2 là diện tích tam giác ABN, h2 là độ cao của tam giác ABN kẻ từ đỉnh B xuống AN.
- Theo định lý diện tích tam giác, ta có: S2 = (1/2)AN.h2
- Theo giả thiết, ta có: AN = (2/3)NC
- Do đó, S2 = (1/2).(2/3)NC.h2 = (1/3)NC.h2
- Ta có thể sử dụng quan hệ giữa các độ cao của tam giác ABC, ABM và ABN để tìm được h2 theo h1.
- Sau khi tìm được h2, ta có thể thay vào công thức S2 = (1/3)NC.h2 để tính được diện tích tam giác ABN.
\(S_{ABM}=\dfrac{1}{3}\times S_{ABE}\) (chung đường cao hạ từ \(B\), \(AM=\dfrac{1}{3}\times AE\))
\(\Leftrightarrow S_{ABE}=3\times S_{ABM}=3\times90=270\left(cm^2\right)\)
\(S_{ABE}=\dfrac{1}{3}\times S_{ABC}\) (chung đường cao hạ từ \(A\), \(BE=\dfrac{1}{3}\times BC\))
\(\Leftrightarrow S_{ABC}=3\times S_{ABE}=3\times270=810\left(cm^2\right)\)
SABM=31×SABE (chung đường cao hạ từ �B, ��=13×��AM=31×AE)
⇔����=3×����=3×90=270(��2)⇔SABE=3×SABM=3×90=270(cm2)
����=13×����SABE=31×SABC (chung đường cao hạ từ �A, ��=13×��BE=31×BC)
⇔����=3×����=3×270=810(��2)⇔SABC=3×SABE=3×270=810(cm2)
\(AB=\sqrt{\left(1-3\right)^2+\left(5+4\right)^2}=\sqrt{85}\)
\(BC=\sqrt{\left(3-1\right)^2+\left(1-5\right)^2}=2\sqrt{5}\)
\(CA=\sqrt{\left(3-3\right)^2+\left(-4-1\right)^2}=5\)
\(p=\frac{\sqrt{85}+2\sqrt{5}+5}{2}\)
\(p-AB=\frac{2\sqrt{5}+5-\sqrt{85}}{2};p-BC=\frac{\sqrt{85}+5-2\sqrt{5}}{2};p-CA=\frac{\sqrt{85}+2\sqrt{5}-5}{2}\)
\(\Rightarrow S_{ABC}=\sqrt{p\left(p-AB\right)\left(p-BC\right)\left(p-CA\right)}=...\)