Cho \(x\le4\). Tìm GTNN cuả A = \(x^2\left(2-x\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b\ge2\sqrt{ab}\Leftrightarrow2\sqrt{ab}\le4\Leftrightarrow ab\le4\)
\(P=\left(\dfrac{2}{a^2+b^2}+\dfrac{1}{ab}\right)+\dfrac{2}{ab}+2ab+\dfrac{32}{ab}\\ \Leftrightarrow P=2\left(\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}\right)+\dfrac{2}{ab}+2ab+\dfrac{32}{ab}\\ \Leftrightarrow P\ge2\cdot\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{32}{ab}\cdot2ab}+\dfrac{2}{4}\\ \Leftrightarrow P\ge\dfrac{8}{\left(a+b\right)^2}+2\sqrt{64}+\dfrac{1}{2}\\ \Leftrightarrow P\ge\dfrac{8}{16}+16+\dfrac{1}{2}=17\)
Dấu \("="\Leftrightarrow a=b=2\)
\(\left(x-1;y-1\right)=\left(a;b\right)\Rightarrow\left\{{}\begin{matrix}a;b>0\\a+b\le2\end{matrix}\right.\)
\(A=\dfrac{\left(a+1\right)^4}{b^2}+\dfrac{\left(b+1\right)^4}{a^2}\ge\dfrac{1}{2}\left[\dfrac{\left(a+1\right)^2}{b}+\dfrac{\left(b+1\right)^2}{a}\right]^2\)
\(A\ge\dfrac{1}{2}\left[\dfrac{\left(a+b+2\right)^2}{a+b}\right]^2\ge\dfrac{1}{2}\left[\dfrac{8\left(a+b\right)}{a+b}\right]^2=32\)
b, Ta có : \(0\le x\le1\)
\(\Rightarrow-2\le x-2\le-1< 0\)
Ta có : \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left(2-x\right)}\)
\(=2\left(m-1\right)x-m< 0\)
TH1 : \(m=1\) \(\Leftrightarrow m>0\)
TH2 : \(m\ne1\) \(\Leftrightarrow x< \dfrac{m}{2\left(m-1\right)}\)
Mà \(0\le x\le1\)
\(\Rightarrow\dfrac{m}{2\left(m-1\right)}>1\)
\(\Leftrightarrow\dfrac{m-2\left(m-1\right)}{2\left(m-1\right)}>0\)
\(\Leftrightarrow\dfrac{2-m}{m-1}>0\)
\(\Leftrightarrow1< m< 2\)
Kết hợp TH1 => m > 0
Vậy ...
\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\)
Để pt có hai nghiệm thỏa mãn
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\x_1+x_2=2\left(m-1\right)\le4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\left(m-2\right)\left(m+2\right)\ge0\\m\le3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m\in\left[-2;0\right]\cup\left(2;+\infty\right)\cup\left\{2\right\}\\m\le3\end{matrix}\right.\)\(\Rightarrow m\in\left[-2;0\right]\cup\left[2;3\right]\)
\(P=x^3_1+x_2^3+x_1x_2\left(3x_1+3x_2+8\right)\)
\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+3x_1x_1\left(x_1+x_2\right)+8x_1x_2\)
\(=8\left(m-1\right)^3+8\left(-m^3+m^2+2m+1\right)\)
\(=-16m^2+40m\)
Vẽ BBT với \(f\left(m\right)=-16m^2+40m\) ;\(m\in\left[-2;0\right]\cup\left[2;3\right]\)
Tìm được \(f\left(m\right)_{min}=-144\Leftrightarrow m=-2\)
\(f\left(m\right)_{max}=16\Leftrightarrow m=2\)
\(\Rightarrow P_{max}=16;P_{min}=-144\)
Vậy....
Lời giải:Đặt $A=f(1)=a+b+c; B=f(-1)=a-b+c; C=f(0)=c$
Theo đề bài: $|A|, |B|, |C|\leq 1$
\(|a|+|b|+|c|=|\frac{A+B}{2}-C|+|\frac{A-B}{2}|+|C|\)
\(\leq |\frac{A+B}{2}|+|-C|+|\frac{A-B}{2}|+|C|=|\frac{A}{2}|+|\frac{B}{2}|+|C|+|\frac{A}{2}|+|\frac{-B}{2}|+|C|\)
\(=|A|+|B|+2|C|\leq 1+1+2=4\) (đpcm)
a: |x|+|y|<=3
=>(|x|,|y|) thuộc {(0;0); (0;1); (0;2); (0;3); (1;0); (2;0); (3;0); (1;1); (1;2); (2;1)}
=>(x,y) thuộc {(0;0); (0;1); (0;-1); (1;0); (-1;0); (0;2); (2;0); (0;-2); (-2;0); (0;3); (0;-3); (3;0); (-3;0); (1;1); (-1;-1); (-1;1); (1;-1); (1;2); (-1;2); (2;1); (2;-1); (1;-2); (-2;1)}
b: =>(|x+5|,|y-2|) thuộc {(0;4); (4;0); (0;3); (3;0); (0;2); (2;0); (0;1); (1;0); (0;0); (1;1); (1;2); (2;1); (1;3); (3;1); (2;2)}
=>(x+5;y-2) thuộc {(0;4); (0;-4); (4;0); (-4;0); (0;3); (0;-3); (3;0); (-3;0); (0;2); (0;-2); (2;0); (-2;0); (1;0); (-1;0); (0;1); (0;-1); (0;0); (1;1); (1;-1); (-1;1); (-1;-1); (1;2); (2;1); (-1;-2); (-2;-1); (1;-2); (-2;1); (-1;2); (2;-1); (1;3); (-1;-3); (1;-3); (-1;3); (3;1); (-3;-1); (-3;1); (3;-1); (2;2); (-2;-2); (2;-2); (-2;2)}
Đến đây thì dễ rồi, bạn làm như tìm x,y bình thường thôi
\(A=-x^3+2x^2+32-32=\left(4-x\right)\left(x^2+2x+8\right)-32\)
Do \(x\le4\Rightarrow\left\{{}\begin{matrix}4-x\ge0\\x^2+2x+8=\left(x+1\right)^2+7>0\end{matrix}\right.\)
\(\Rightarrow\left(4-x\right)\left(x^2+2x+8\right)\ge0\Rightarrow A\ge-32\)
\(\Rightarrow A_{min}=-32\) khi \(x=4\)