phân tích thành đa thức:\(x^2+4y^2+4xy+6x+12y+5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+4y^2+9-4xy-6x+12y\)
\(=\left(x^2-4xy+4y^2\right)+\left(-6x+12y\right)+9\)
\(=\left(x-2y\right)^2-6\left(x-2y\right)+9\)
\(=\left(x-2y-3\right)^2\)
\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11
e: Ta có: \(x^2-6x+y^2+4y+2=0\)
\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Dấu '=' xảy ra khi x=3 và y=-2
\(-\left(x+2y\right)^2\)
\(-\left(x-3\right)^2\)
\(\left(3-5x\right)^2\)
\(-x^2-4xy-4y^2=-\left(x+2y\right)^2\)
\(-x^2+6x-9=-\left(x-3\right)^2\)
\(25x^2-30x+9=\left(5x-3\right)^2\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
3 - 6x + 3x^2
= 3 ( 1 - 2x + x^2 )
= 3( 1 - x )^2
b, x^2 - 4xy + 4y^2
= ( x)^2 + 2.x.2y + (2y)^2
= ( x+ 2y)^2
a: \(\left(x-3\right)^2-\left(2x-5\right)^2\)
\(=\left(x-3-2x+5\right)\left(x-3+2x-5\right)\)
\(=\left(2-x\right)\left(3x-8\right)\)
b: \(\left(x+y\right)^2-x^2+4xy-4y^2\)
\(=\left(x+y\right)^2-\left(x-2y\right)^2\)
\(=\left(x+y+x-2y\right)\left(x+y-x+2y\right)\)
\(=3y\left(2x-y\right)\)
A= \(^{x^3+3x^2y-4xy^2-12y^3=x^2\left(x+3y\right)-4y^2\left(x+3y\right)=\left(x+3y\right)\left(x^2-4y^2\right)}\)
x2 + 4y2 + 4xy + 6x + 12y + 5
= (x2 + 4xy + 4y2) + 6(x + 2y) + 5
= (x + 2y)2 + 6(x + 2y) + 5
= (x + 2y)2 + (x + 2y) + 5(x + 2y) + 5
= (x + 2y)(x + 2y + 1) + 5(x + 2y + 1)
= (x + 2y + 5)(x + 2y + 1)
phân tích thành đa thức:x 2 + 4y 2 + 4xy + 6x + 12y + 5
x 2 + 4y 2 + 4xy + 6x + 12y + 5
= (x 2 + 4xy + 4y 2 ) + 6(x + 2y) + 5
= (x + 2y)2 + 6(x + 2y) + 5
= (x + 2y)2 + (x + 2y) + 5(x + 2y) + 5
= (x + 2y)(x + 2y + 1) + 5(x + 2y + 1)
= (x + 2y + 5)(x + 2y + 1)
Hok tốt