K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 6 2020

\(P=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)\)

\(\Rightarrow P\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{4xy}{4xz}}=\frac{4}{1^2}+4=8\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

8 tháng 6 2015

Tổng không đổi tích lớn nhất khi 2 số bằng nhau

Do x+y=1(không đổi)

=>xy đạt giá trị lớn nhất <=>x=y=0,5 =>xy=0,25

Ta có:x2+y2\(\ge\)2xy

=> bạn làm iaaps đi tui bận tí

19 tháng 11 2015

Điểm rơi: \(x=y=\frac{1}{2}.\)

\(A=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

\(\ge\frac{1}{x^2+y^2+2xy}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)

\(=\frac{1}{\left(x+y\right)^2}+2+\frac{5}{\left(x+y\right)^2}\ge2+\frac{6}{1^2}=8\)

24 tháng 10 2019

@Nguyễn Việt Lâm

@Lê Thị Thục Hiền

@Phạm Minh Quang

24 tháng 10 2019

mất dạy nỏ đi hk

13 tháng 10 2019

\(S=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+\frac{3}{2xy}+4xy\ge\frac{4}{\frac{1}{4}}+\frac{3}{2xy}+384xy-380xy\)

\(\ge16+2\cdot24-380xy=64-380xy\)

+) \(\frac{1}{2}\ge x+y\ge2\sqrt{xy}\Rightarrow\frac{1}{4}\ge4xy\Leftrightarrow\frac{1}{16}\ge xy\)

\(\Rightarrow-380xy\ge380\cdot\frac{1}{16}=23.75\)

\(\Rightarrow S\ge64-23.75=40.25\)

Dấu = xảy ra khi x=y=1/4

14 tháng 10 2019

Tại sao \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\le\frac{\left(1+1\right)^2}{\left(x+y\right)^2}\)  ?

24 tháng 10 2019

@Akai Haruma

@Trần Thanh Phương

@HISINOMA KINIMADO

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)