Tìm GTNN (Min) của \(A=\frac{3x^2+12x+17}{x^2+4x+5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3\left(x^2-4x+5\right)-5}{x^2-4+5}=3-\frac{5}{\left(x-2\right)^2+1}\ge3-5=-2\)
Dau '=' xay ra khi \(x=2\)
Vay \(A_{min}=-2\)khi \(x=2\)
a) Ta có: \(A=3x^2-6x+5\)
\(=3\left(x^2-2x+\frac{5}{3}\right)\)
\(=3\left(x^2-2x+1+\frac{2}{3}\right)\)
\(=3\left(x-1\right)^2+2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x-1\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x-1=0
hay x=1
Vậy: Giá trị nhỏ nhất của biểu thức \(A=3x^2-6x+5\) là 2 khi x=1
b) Ta có: \(4x^2-12x+35\)
\(=4\left(x^2-3x+\frac{35}{4}\right)\)
\(=4\left(x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{26}{4}\right)\)
\(=4\left(x-\frac{3}{2}\right)^2+26\)
Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow4\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow4\left(x-\frac{3}{2}\right)^2+26\ge26\forall x\)
\(\Rightarrow4x^2-12x+35\ge26\forall x\)
\(\Rightarrow\frac{5}{4x^2-12x+35}\le\frac{5}{26}\forall x\)
\(\Rightarrow\frac{-5}{4x^2-12x+35}\ge\frac{-5}{26}\forall x\)
Dấu '=' xảy ra khi \(x-\frac{3}{2}=0\)
hay \(x=\frac{3}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(B=-\frac{5}{4x^2-12x+35}\) là \(-\frac{5}{26}\) khi \(x=\frac{3}{2}\)
a) 5.(x^2-3x+1)+x.(1-5x)=x-2
\(\Leftrightarrow5x^2-15x+5+x-5x^2=x-2\)
\(\Leftrightarrow-14x-x=-2-5\)
\(\Leftrightarrow-15x=-7\)
\(\Leftrightarrow x=\frac{7}{15}\)
b\(,3x.\left(\frac{4}{3}+1\right)-4x\left(x-2\right)=10\)
\(\Leftrightarrow4x+3x-4x^2+8x-10=0\)
\(\Leftrightarrow-4x^2+15x-10=0\)
Đề sai???
\(c,12x^2-4x\left(3x-5\right)=10x-17\)
\(\Leftrightarrow12x^2-12x^2+20x-10x=-17\)
\(\Leftrightarrow10x=-17\)
\(\Leftrightarrow x=-\frac{17}{10}\)
\(d,4x\left(x-5\right)-7x\left(x-4\right)+3x^2=12\)
\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=12\)
\(\Leftrightarrow8x=12\)
\(\Leftrightarrow x=\frac{3}{2}\)
\(a,5\left(x^2-3x+1\right)+x\left(1-5x\right)=x-2\)
\(\Leftrightarrow5x^2-15x+5+x-5x^2-x+2=0\)
\(\Leftrightarrow-15x+7=0\)
\(\Leftrightarrow-15x=-7\)
\(\Leftrightarrow x=-\frac{7}{-15}\)
\(\Leftrightarrow x=\frac{7}{15}\)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
làm khuyến mại 1 câu;
a) = 12x2 -12x2 +20x -10x +17 =0
10x = -17
x = -17/10
Biểu thức này chỉ tồn tại giá trị lớn nhất (max), không tồn tại giá trị nhỏ nhấ (min)
Vậy bạn giải ra Max hộ mình luôn được không