K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Giải phương trình |x-5|=2x(1)

Trường hợp 1: x≥5

(1)⇔x-5=2x

⇔x-5-2x=0

⇔-5-x=0

⇔-(5+x)=0

⇔5+x=0

hay x=-5(loại)

Trường hợp 2: x<5

(1)⇔5-x=2x

⇔5-x-2x=0

⇔5-3x=0

⇔3x=5

hay \(x=\frac{5}{3}\)(tm)

Vậy: \(S=\left\{\frac{5}{3}\right\}\)

12 tháng 5 2017

bpt (1) : x> \(\frac{2m}{3m-1}\); bpt (2) : x > \(\frac{m}{2}\)

de 2 bpt co cung tap nghiem thi \(\frac{2m}{3m-1}\)= \(\frac{m}{2}\)(3) voi dk m # \(\frac{1}{3}\)

giai pt (3) tim duoc m= 0 , m = \(\frac{5}{3}\)thoa dieu kien m # \(\frac{1}{3}\)

a: Khi m=1 thì phương trình sẽ là \(x^2-3x-5=0\)

\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-5\right)=9+20=29\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{29}}{2}\\x_2=\dfrac{3+\sqrt{29}}{2}\end{matrix}\right.\)

b: \(\text{Δ}=\left(2m+1\right)^2-4\left(-m-4\right)\)

\(=4m^2+4m+1+4m+16\)

\(=4m^2+8m+17\)

\(=4m^2+4m+4+13\)

\(=\left(2m+2\right)^2+13>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

1 tháng 3 2022

a, Thay m =1 ta đc 

\(x^2-3x-5=0\)

\(\Delta=9-4\left(-5\right)=9+20=29>0\)

Vậy pt luôn có 2 nghiệm pb 

\(x=\dfrac{3\pm\sqrt{29}}{2}\)

b, Ta có \(\Delta=\left(2m+1\right)^2-4\left(-m-4\right)=4m^2+4m+1+4m+16\)

\(=4m^2+8m+16+1=4\left(m^2+2m+4\right)+1=4\left(m+1\right)^2+13>0\)

vậy pt luôn có 2 nghiệm pb 

19 tháng 4 2021

a, Thay m = 0 vào phương trình trên ta được 

\(x^2-2x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=3\)

Vậy với m = 0 thì x = -1 ; x = 3 

 

17 tháng 5 2021

1. \(\left|\frac{2x^2-x}{3x-4}\right|\ge1\) Điều kiện: \(x\ne\frac{4}{3}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{2x^2-x}{3x-4}\ge1\\\frac{2x^2-x}{3x-4}\le-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{x^2-2x+2}{3x-4}\ge0\\\frac{x^2+x-2}{3x-4}\le0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x>\frac{4}{3}\\x\in(-\infty;-2]U[1;\frac{4}{3})\end{cases}}\Leftrightarrow x\in(-\infty;-2]U[1;+\infty)\backslash\left\{\frac{4}{3}\right\}\)

2.\(\hept{\begin{cases}x^2\le-2x+3\left(1\right)\\\left(m+1\right)x\ge2m-1\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x^2+2x-3\le0\Leftrightarrow-3\le x\le1\)

+) Nếu \(m=-1\) thì (2) vô nghiệm, suy ra \(m\ne-1\)

+) Nếu \(m>-1\) thì \(\left(2\right)\Leftrightarrow x\ge\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=1\Leftrightarrow m=2>-1\)

+) Nếu \(m< -1\)thì \(\left(2\right)\Leftrightarrow x\le\frac{2m-1}{m+1}\)

Hệ BPT có nghiệm duy nhất \(\Leftrightarrow\frac{2m-1}{m+1}=-3\Leftrightarrow m=-\frac{2}{5}< -1\)

Vậy \(m=\left\{\frac{-2}{5};2\right\}\)

19 tháng 5 2021

1. |2x2−x3x−4 |≥1 Điều kiện: x≠43 

⇔[

2x2−x3x−4 ≥1
2x2−x3x−4 ≤−1

⇔[

x2−2x+23x−4 ≥0
x2+x−23x−4 ≤0

⇔[

x>43 
x∈(−∞;−2]U[1;43 )

⇔x∈(−∞;−2]U[1;+∞)\{43 }

2.{

x2≤−2x+3(1)
(m+1)x≥2m−1(2)

(1)⇔x2+2x−3≤0⇔−3≤x≤1