viết phương trình tiếp tuyến của đồ thị hàm số y=\(\frac{x^3}{3}\)- 2x2 + 3x + 1 tại điểm A ( 1 ; \(\frac{7}{3}\) )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi A 0 ; 2 là giao điểm của đồ thị hàm số và trục hoành.
Ta có: y ' = 3 x 2 − 4 x + 3 ⇒ y ' 2 = 7.
Suy ra PTTT tại A 0 ; 2 là:
y = 7 x − 2 + 0 ⇔ y = 7 x − 14
Đặt \(y=f(x)=x^3+2x^2+x-1 \)
\(f'(x)=3x^2+4x+1\)
Phương trình tiếp tuyến của đồ thị hàm số y tại M là:
\(y=f'(x_m)(x-x_m)+f(x_m)=f'(1)(x-1)+f(1)=8(x-1)+3=8x-5 \)
Đáp án C
Có f ' x = 3 x 2 − 4 x + 3 ⇒ k = f ' 2 = 7
phương trình tiếp tuyến cần tìm là
y = 7 x − 2 + f 2 = 7 x − 7
Đáp án B
Tọa độ giao điểm của (C) và đường thẳng y = x − 3 là nghiệm của hệ:
y = − 2 x + 3 x − 1 y = x − 3 ⇔ x = 2 y = − 1 x = 0 y = − 3 ⇒ A ( 2 ; − 1 ) B ( 0 ; − 3 )
y ' = − 1 x − 1 2
Phương trình tiếp tuyến với ( C) tại A ( 2 ; − 1 ) là:
y = − 1 2 − 1 2 ( x − 2 ) − 1 = − x + 1
Phương trình tiếp tuyến với ( C) tại B ( 0 ; − 3 ) là:
y = − 1 0 − 1 2 ( x − 0 ) − 3 = − x − 3
Đáp án A
Có y ' = 3 x 2 − 4 x + 3 . Có y 2 = 7 ; y ' 2 = 7 . Vậy phương trình tiếp tuyến là y = 7 x − 2 + 7 ⇔ y = 7 x − 7
Chọn A.
Đạo hàm: y’ = 3x2 – 4x + 3.
y'(-1) = 10; y(-1) = -6
Phương trình tiếp tuyến cần tìm là (d): y = 10(x + 1) – 6 = 10x + 4.
\(y'\left(1\right)=-\dfrac{1}{1^2}=-1\)
Phương trình tiếp tuyến của đồ thị hàm số tại điểm N(1;1) là:
\(y=-1\left(x-1\right)+1=-x+2\)
Đáp án A
Đặt f 1 = a f ' 1 = b , thay x = 0 vào giả thiết, ta được f 2 1 = - f 3 0 ⇔ a 3 + a 2 = 0 ⇔ [ a = 0 a = - 1
Đạo hàm cả 2 vế biểu thức f 2 1 + 2 x = x - f 3 1 - x , ta đưuọc
4 f ' 1 + 2 x . f 1 + 2 x = 1 + 3 f ' 1 - x . f 2 1 - x 1
Thay x = 0 vào (1), ta có 4 f ' 1 . f 1 = 1 + 3 f ' 1 . f 2 1 ⇔ 4 a b = 1 + 3 a 2 b 2
TH1. Với a = 0 thay vào (2), ta được 0 = 1 (vô lí)
TH2. Với a = -1 thay vào (2), ta được - 4 b = 1 + 3 b ⇔ b = - 1 7 ⇒ f ' 1 = - 1 7
Vậy phương trình tiếp tuyến cần tìm là y - f 1 = f ' 1 x - 1 ⇒ y = - 1 7 x - 6 7 .
\(y'=x^2-4x+3\)
\(y'\left(1\right)=0\)
Phương trình tiếp tuyến:
\(y=0\left(x-1\right)+\frac{7}{3}\Leftrightarrow y=\frac{7}{3}\)