🎁 OLM khai giảng khóa học hè. XEM NGAY!!!
OLM Class: Học trực tiếp cùng giáo viên OLM (hoàn toàn mới)!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải bất phương trinh
\(\left(x-1\right)\sqrt{x^2-3x+4}>x^2-3x+2\)
\(\Leftrightarrow\left(x-1\right)\sqrt{x^2-3x+4}-\left(x-1\right)\left(x-2\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left(\sqrt{x^2-3x+4}-x+2\right)>0\)
TH1: \(\left\{{}\begin{matrix}x>1\\\sqrt{x^2-3x+4}>x-2\end{matrix}\right.\)
- Với \(1< x\le2\) BPT luôn đúng
- Với \(x>2\Rightarrow\left\{{}\begin{matrix}x>1\\x^2-3x+4>x^2-4x+4\end{matrix}\right.\) \(\Rightarrow x>1\)
TH2: \(\left\{{}\begin{matrix}x< 1\\\sqrt{x^2-3x+4}< x-2\end{matrix}\right.\) (vô nghiệm)
Vậy nghiệm của BPT là \(x>1\)
giải bất phương trinh
\(\left(x-1\right)\sqrt{x^2-3x+4}>x^2-3x+2.\)
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)
sao đề nhìn bá vậy bạn ...
bài này chắc đặt \(\sqrt{x^3-3x+6}\)cho nó gọn thôi
Giải bất phương trình: \(\sqrt[4]{\left(x-2\right).\left(4-x\right)}+\sqrt[4]{x-2}+\sqrt[4]{4-x}+6x\sqrt{3x}\le x^3+30\)
giải bất phương trình vô tỉ sau
\(\sqrt[4]{\left(x-3\right)\left(5-x\right)}+\sqrt[4]{x-3}+\sqrt[4]{5-x}+6\left(x-1\right)\sqrt{3\left(x-1\right)}< =x^3-3x^2+3x+29\)
Giải bất phương trình: \(3\left(x-2\right)+\sqrt{3x-4}< 3\sqrt{2x+1}+\sqrt{x-3}\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2\left(3x-2\right)\left(x^2-1\right)}{\left(-x^2+2x-3\right)\left(2-x\right)^2}\ge0\)
b) \(\dfrac{x-5}{x-1}>2\)
c) \(2x-\sqrt{x^2-5x-14}< 1\)
d) \(x+\sqrt{x^2-4x-5}< 4\)
e) \(\left\{{}\begin{matrix}\left(4-x\right)\left(x^2-2x-3\right)< 0\\x^2\ge\left(x^2-x-3\right)^2\end{matrix}\right.\)
1) Giải bất phương trình sau:
a) |1-3x|≤7
b) \(\sqrt{3x^2-2x-5}\)≤x+1
2) Bằng cách lập bảng xét dấu, giải bất phương trình:
\(\frac{\left(2x-1\right)\left(3-x\right)}{x^2-5x+4}\)>0
3) Giải phương trình
x+4-\(\sqrt{14x-1}\)=\(\frac{\sqrt{10x-9}-1}{x}\)
Giải pt, bất pt
a) \(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}=2x\right)\)
b) \(\left(x^2-3x+2\right)\left(x^2-12x+32\right)\le4x^2\)
c) \(2\sqrt{3x+7}-5\sqrt[3]{x-6}=4\)
\(\Leftrightarrow\left(x-1\right)\sqrt{x^2-3x+4}-\left(x-1\right)\left(x-2\right)>0\)
\(\Leftrightarrow\left(x-1\right)\left(\sqrt{x^2-3x+4}-x+2\right)>0\)
TH1: \(\left\{{}\begin{matrix}x>1\\\sqrt{x^2-3x+4}>x-2\end{matrix}\right.\)
- Với \(1< x\le2\) BPT luôn đúng
- Với \(x>2\Rightarrow\left\{{}\begin{matrix}x>1\\x^2-3x+4>x^2-4x+4\end{matrix}\right.\) \(\Rightarrow x>1\)
TH2: \(\left\{{}\begin{matrix}x< 1\\\sqrt{x^2-3x+4}< x-2\end{matrix}\right.\) (vô nghiệm)
Vậy nghiệm của BPT là \(x>1\)