K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

TL

a) CE và EB là 2 tiếp tuyến cắt nhau tại E

⇒ EC = EB và CB ⊥ OE

Tương tự, DC và DA là 2 tiếp tuyến cắt nhau tại D

⇒ DC = DA và AC ⊥ OD

Khi đó: AD + BE = DC + EC = DE

b) Xét tứ giác OMCN có:

∠(OMC) = 90o (AC ⊥ OD)

∠(ONC) = 90o (CB ⊥ OE)

∠(NCM) = 90o (AC ⊥ CB)

⇒ Tứ giác OMCN là hình chữ nhật

c) Xét tam giác DOC vuông tại C, CM là đường cao có:

OM.OD = OC2 = R2

Xét tam giác EOC vuông tại C, CN là đường cao có:

ON.OE = OC2 = R2

Khi đó: OM.OD + ON.OE = 2R2

Vậy OM.OD + ON.OE không đổi

d) Ta có: N là trung điểm của BC

⇒ AN là trung tuyến của ΔABC

CO cũng là trung tuyến của ΔABC

AN ∩ CO = H

⇒ H là trọng tâm ΔABC

Vậy khi C di chuyển trên nửa đường tròn (O) thì H di chuyển trên nửa đường tròn

(O; R/3)

HT

26 tháng 10 2021

TL;

a: Xét (O) có 

DA là tiếp tuyến có A là tiếp điểm

DC là tiếp tuyến có C là tiếp điểm

Do đó: DA=DC

Xét (O) có 

EC là tiếp tuyến có E là tiếp điểm

EB là tiếp tuyến có B là tiếp điểm

Do đó: EC=EB

Ta có: CD+CE=DE

nên DA+EB=DE

^YHGYK?

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA

Xét (O) có

DB là tiếp tuyến

DM là tiếp tuyến

Do đó: DB=DM

Ta có: MC+MD=DC

nên DC=CA+DB

11 tháng 6 2021

a) Ta có: \(\angle DBO+\angle DFO=90+90=180\Rightarrow OBDF\) nội tiếp

Lấy I là trung điểm DO 

Vì \(\Delta DBO,\Delta DFO\) lần lượt vuông tại B và F có I là trung điểm DO

\(\Rightarrow\left\{{}\begin{matrix}BI=DI=IO\\ID=IO=IF\end{matrix}\right.\Rightarrow IB=ID=IO=IF\Rightarrow I\) là tâm của (OBDF)

b) Ta có: \(AO=\sqrt{AF^2+OF^2}=\sqrt{\dfrac{16}{9}R^2+R^2}=\dfrac{5}{3}R\)

\(\Rightarrow cosDAB=\dfrac{AF}{AO}=\dfrac{\dfrac{4}{3}R}{\dfrac{5}{3}R}=\dfrac{4}{5}\)

c) Cần chứng minh \(\dfrac{BD}{DM}-1=\dfrac{DM}{AM}\Rightarrow\dfrac{DF-DM}{DM}=\dfrac{DM}{AM}\)

\(\Rightarrow\dfrac{MF}{DM}=\dfrac{DM}{AM}\Rightarrow DM^2=MF.MA\) 

Vì \(\left\{{}\begin{matrix}MO\bot BC\\DB\bot BC\end{matrix}\right.\) \(\Rightarrow MO\parallel DB\)\(\Rightarrow\angle MOD=\angle BDO=\angle FDO\) 

\(\Rightarrow\Delta MOD\) cân tại M \(\Rightarrow MO=MD\)

mà \(MO^2=MF.MA\Rightarrow MD^2=MF.MA\)

d) MO cắt nửa đường tròn tại E

Ta có: \(tanDAB=\dfrac{FO}{AF}=\dfrac{R}{\dfrac{4}{3}R}=\dfrac{3}{4}\)

mà \(tanDAB=\dfrac{MO}{OA}\Rightarrow\dfrac{MO}{OA}=\dfrac{3}{4}\Rightarrow MO=\dfrac{3}{4}.\dfrac{5}{3}R=\dfrac{5}{4}R\)

Vì \(MO\parallel DB\) \(\Rightarrow\dfrac{MO}{DB}=\dfrac{AO}{AB}=\dfrac{\dfrac{5}{3}R}{2R}=\dfrac{5}{6}\Rightarrow DB=\dfrac{MO}{\dfrac{5}{6}}=\dfrac{\dfrac{5}{4}R}{\dfrac{5}{6}}=\dfrac{3}{2}R\)

Có DB,OM rồi thì bạn thế vào tính \(S_{OBDM}=\dfrac{1}{2}.\left(BD+OM\right).BO\)

còn diện tích quạt \(BOE=\dfrac{90}{360}.R^2\pi=\dfrac{1}{4}R^2\pi\)

\(\Rightarrow\) diện tích tứ giác OBDM nằm ngoài đường tròn \(=S_{OBDM}-S_{quatBOE}\)

bạn thế vài tính nha

PS: ý tưởng là vậy chứ bạn tính toán lại cho kĩ,chứ mình hay tính nhầm lắm

undefined

 

20 tháng 5 2022

Sao AB=2R v ạ?

a: Xét (O) có 

ΔACB nội tiếp đường tròn

AB là đường kính

Do đó: ΔACB vuông tại C

Xét ΔPAB vuông tại A có AC là đường cao ứng với cạnh huyền PB, ta được:

\(PA^2=PC\cdot PB\)

3 tháng 10 2021

Cảm ơn ạhihi

30 tháng 11 2023

c: Gọi giao điểm của BC với Ax là K

BC\(\perp\)AC tại C

=>AC\(\perp\)BK tại K

=>ΔACK vuông tại C

\(\widehat{DKC}+\widehat{DAC}=90^0\)(ΔACK vuông tại C)

\(\widehat{DCK}+\widehat{DCA}=\widehat{KCA}=90^0\)

mà \(\widehat{DCA}=\widehat{DAC}\)(ΔDAC cân tại D)

nên \(\widehat{DKC}=\widehat{DCK}\)

=>DC=DK

mà DC=DA

nên DK=DA

=>D là trung điểm của AK

CH\(\perp\)AB

AK\(\perp\)AB

Do đó: CH//AK

Xét ΔOKD có CI//KD

nên \(\dfrac{CI}{KD}=\dfrac{OI}{OD}\left(1\right)\)

Xét ΔOAD có IH//AD

nên \(\dfrac{IH}{AD}=\dfrac{OI}{OD}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{CI}{KD}=\dfrac{IH}{AD}\)

mà KD=AD

nên CI=IH

=>I là trung điểm của CH

a: Xét tứ giác PAOM có

góc PAO+góc PMO=180 độ

=>PAOM là tứ giác nội tiếp

b: Xét (O) có

PA,PM là tiếp tuyến

nên PA=PM và OP là phân giác của góc MOA(1)

mà OA=OM

nên OP là trung trực của AM

=>OP vuông góc AM

Xét (O) có

QM,QB là tiếp tuyến

nên QM=QB và OQ là phân giác của góc MOB(2)

mà OM=OB

nên OQ là trung trực của MB

=>OQ vuông góc MB tại K

Từ (1), (2) suy ra góc POQ=1/2*180=90 độ

Xét tứ giác MIOK có

góc MIO=góc MKO=góc IOK=90 độ

=>MIOK là hình chữ nhật

Xét ΔOPQ vuông tại O có OM là đường cao

nên MP*MQ=OM^2=R^2

=>AP*QB=OM^2=R^2 ko đổi

a) Xét tứ giác AMCO có 

\(\widehat{MAO}\) và \(\widehat{MCO}\) là hai góc đối

\(\widehat{MAO}+\widehat{MCO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AMCO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét (O) có 

\(\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ADB}=90^0\)(Hệ quả góc nội tiếp)

hay AD\(\perp\)MB tại D

Xét (O) có 

MA là tiếp tuyến có A là tiếp điểm(gt)

MC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: MA=MC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: MA=MC(cmt)

nên M nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OA=OC(=R)

nên O nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra MO là đường trung trực của AC

hay MO\(\perp\)AC tại E

Xét tứ giác AMDE có 

\(\widehat{ADM}=\widehat{AEM}\left(=90^0\right)\)

\(\widehat{ADM}\) và \(\widehat{AEM}\) là hai góc cùng nhìn cạnh AM

Do đó: AMDE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

18 tháng 5 2021

Bạn có giải đc câu b ko . Giúp mình câu đấy 

NV
17 tháng 1 2024

a.

Do AD là tiếp tuyến tại A \(\Rightarrow\widehat{OAD}=90^0\)

\(\Rightarrow\) 3 điểm O, A, D thuộc đường tròn đường kính OD (1)

BD là tiếp tuyến tại B \(\Rightarrow\widehat{OBD}=90^0\)

\(\Rightarrow\) 3 điểm O, B, D thuộc đường tròn đường kính OD (2)

(1);(2) \(\Rightarrow\) 4 điểm A, D, B, O cùng thuộc đường tròn đường kính OD

b.

Do D là giao điểm 2 tiếp tuyến tại A và B, theo t/c hai tiếp tuyến cắt nhau

\(\Rightarrow DA=DB\)

Mà \(OA=OB=R\)

\(\Rightarrow OD\) là trung trực của AB \(\Rightarrow OD\perp AB\) (3)

BC là đường kính và A thuộc đường tròn nên \(\widehat{BAC}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{BAC}=90^0\Rightarrow BA\perp CA\) (4)

(3);(4) \(\Rightarrow OD||CA\) (cùng vuông góc AB) hay \(OD||CE\)

Áp dụng hệ thức lượng trong tam giác vuông BCE với đường cao BA ứng với cạnh huyền:

\(BC^2=CA.CE\Rightarrow\left(2R\right)^2=CA.CE\)

\(\Rightarrow CA.CE=4R^2\)

NV
17 tháng 1 2024

Em kiểm tra lại đề bài, đoạn này là sao nhỉ: "Tiếp tuyến tại 4 của (O) "

a: Xét tứ giác ADBO có

\(\widehat{DBO}+\widehat{DAO}=90^0+90^0=180^0\)

=>ADBO là tứ giác nội tiếp

=>A,D,B,O cùng thuộc một đường tròn

b: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

=>BA\(\perp\)AC tại A

=>BA\(\perp\)CE tại A

Xét (O) có

DA,DB là các tiếp tuyến

DO đó: DA=DB

=>D nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra OD là đường trung trực của AB

=>OD\(\perp\)AB

Ta có: OD\(\perp\)AB

CE\(\perp\)AB

Do đó: OD//CE

Xét ΔEBC vuông tại B có BA là đường cao

nên \(CA\cdot CE=CB^2\)

=>\(CA\cdot CE=\left(2R\right)^2=4R^2\)