phương trình đi qua M(5;-3) và cắt hai trục tọa độ tại A và B sao cho M là trung điểm của AB là ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi pt đường thẳng (d) là : \(y=ax+b\left(a\ne0\right)\)
Vì (d) có hệ số góc là 2 \(\Rightarrow a=2\Rightarrow y=2x+b\)
Vì đường thẳng d đi qua điểm \(M\left(-1;3\right)\)
\(\Rightarrow3=-2+b\Rightarrow b=5\Rightarrow y=2x+5\)
b) Gọi pt đường thẳng d là \(y=ax+b\left(a\ne0\right)\)
Vì \((d)\parallel (d')\Rightarrow a=2\Rightarrow y=2x+b\)
Vì đường thẳng d đi qua điểm \(M\left(3;5\right)\)
\(\Rightarrow5=6+b\Rightarrow b=-1\Rightarrow y=2x-1\)
c)
(d) vuông góc với (d') : y = 2x
=> (d) có dạng : y = -2x + b
(d) đi qua M (3,5) :
5 = (-2) . 3 + b
=> b = 10
(d) : y = -2x + 10
a: Vì Δ//d nên Δ: 3x-4y+c=0
Thay x=1 và y=4 vào Δ, ta được:
c+3-16=0
=>c=13
b: Vì Δ vuông góc d nên Δ: 4x+3y+c=0
Thay x=-3 và y=-5 vào Δ, ta được:
c+4*(-3)+3(-5)=0
=>c-27=0
=>c=27
=>4x+3y+27=0
a: Phương trìh tham số là:
\(\left\{{}\begin{matrix}x=3+4t\\y=5+t\end{matrix}\right.\)
vtcp là (4;1)
=>VTPT là (-1;4)
Phương trình tổng quát là:
-1(x-3)+4(y-5)=0
=>-x+3+4y-20=0
=>-x+4y-17=0
b: vtpt là (7;3)
=>VTCP là (-3;7)
Phương trình tham số là \(\left\{{}\begin{matrix}x=-2-3t\\y=4+7t\end{matrix}\right.\)
Phương trình tổng quát là:
7(x+2)+3(y-4)=0
=>7x+14+3y-12=0
=>7x+3y+2=0
c: vecto AB=(4;-4)
=>VTPT là (4;4)
Phương trình tham số là
x=1+4t và y=3-4t
Phương trình tổng quát là:
4(x-1)+4(y-3)=0
=>x-1+y-3=0
=>x+y-4=0
- Ta có phương trình tham số :
\(\left\{{}\begin{matrix}x=3-t\\y=-5+2t\end{matrix}\right.\) \(\left(t\in R\right)\)