K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2019

Đáp án C.

Ta có

Khi đó, giả thiết trở thành:

log 3 x + y x 2 + y 2 + x y + 2 = x 2 + y 2 + x y + 2 - 3 x + y - 2

⇔ log 3 x + y - log 3 x 2 + y 2 + x y + 2 = x 2 + y 2 + x y + 2 - 3 x + y - 2

⇔ 3 x + y + log 3 3 x + y = x 2 + y 2 + x y + 2 + log 3 x 2 + y 2 + x y + 2

Xét hàm số  f t = t + log 3   t  trên khoảng  0 ; + ∞ , có  f ' t = 1 + 1 t   ln 3 > 0 ; ∀ t > 0 .

Suy ra f(t) là hàm số đồng biến trên 0 ; + ∞  mà f[3(x + y)] = f(x2 + y2 + xy + 2)

24 tháng 12 2018

Đáp án C.

Ta có x x − 3 + y y − 3 + x y

= x 2 + y 2 + x y − 3 x − 3 y = x 2 + y 2 + x y + 2 − 3 x + y − 2

Khi đó, giả thiết trở thành:

log 3 x + y x 2 + y 2 + x y + 2 = x 2 + y 2 + x y + 2 − 3 x + y − 2  

⇔ log 3 x + y − log 3 x 2 + y 2 + x y + 2 = x 2 + y 2 + x y + 2 − 3 x + y − 2  

⇔ 3 x + y + log 3 3 x + y = x 2 + y 2 + x y + 2 + log 3 x 2 + y 2 + x y + 2  

Xét hàm số f t = t + log 3 t  trên khoảng  0 ; + ∞ ,

có f ' t = 1 + 1 t ln 3 > ;   ∀ t > 0.

Suy ra f( t) là hàm số đồng biến trên  0 ; + ∞

mà f 3 x + y = f x 2 + y 2 + x y + 2  

⇔ 2 x + y 2 − 6 2 x + y + 5 = − 3 y − 1 2 ≤ 0 ⇔ 1 ≤ 2 x + y ≤ 5.  

Khi đó P = 1 + 2 x + y − 5 x + y + 6 ≤ 1  

vì 2 x + y − 5 ≤ 0 x + y + 6 > 0 .  Vậy  P m a x = 1.

25 tháng 11 2019

Chọn A.

Phương pháp:

- Biến đổi điều kiện bài cho về dạng f u = f v  với u, v là các biểu thức của x, y.

- Xét hàm f t  suy ra mối quan hệ của u, v rồi suy ra x, y.

- Đánh giá P theo biến t=x+y bằng cách sử dụng phương pháp hàm số.

Cách giải:

16 tháng 10 2019

Đáp án D

14 tháng 7 2018

15 tháng 9 2017

Đáp án D

Phương pháp giải:

Sử dụng phương pháp hàm đặc trưng để từ giả thiết suy ra mối liên hệ giữa hai biến, sau đó sử dụng phương pháp thể và khảo sát hàm số tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức

23 tháng 11 2019

Chọn D

1 tháng 11 2016

Ta có: \(x+y=1\Rightarrow\left(x+y\right)^3=1\)

\(\Rightarrow x^3+y^3+3xy\left(x+y\right)=1\)

\(\Rightarrow x^3+y^3+3xy=1\)

\(\Rightarrow B=\frac{x^3+y^3+3xy}{x^3+y^3}+\frac{x^3+y^3+3xy}{xy}\)

\(=4+\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\)

Áp dụng Bđt Cô-si ta có:

\(\frac{3xy}{x^3+y^3}+\frac{x^3+y^3}{xy}\ge2\sqrt{\frac{3xy}{x^3+y^3}\cdot\frac{x^3+y^3}{xy}}=2\sqrt{3}\)

\(\Rightarrow B\ge4+2\sqrt{3}\)

Dấu = khi \(\hept{\begin{cases}x+y=1\\x^3+y^3=\sqrt{3xy}\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=1\\1-3xy=\sqrt{3xy}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=1\\3\sqrt{xy}=\frac{-1+\sqrt{5}}{2}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x+y=1\\xy=\frac{6-2\sqrt{5}}{12}\end{cases}}\)

\(\Leftrightarrow x^2-x+\frac{6-2\sqrt{5}}{12}=0\)\(\Leftrightarrow x,y=\frac{1\pm\sqrt{\frac{2\sqrt{5}-3}{3}}}{2}\)

1 tháng 11 2016

Làm sai rồi bạn

15 tháng 11 2018

25 tháng 12 2019