K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 5 2020

Đường tròn tâm \(O\left(0;0\right)\) bán kính \(R=\sqrt{5}\)

Do \(\Delta\perp d\) nên \(\Delta\) nhận \(\left(2;1\right)\) là 1 vtpt

Phương trình \(\Delta\) có dạng: \(2x+y+c=0\)

\(\Delta\) tiếp xúc (C) \(\Leftrightarrow d\left(O;\Delta\right)=R\)

\(\Leftrightarrow\frac{\left|c\right|}{\sqrt{2^2+1^2}}=\sqrt{5}\Rightarrow\left|c\right|=5\Rightarrow\left[{}\begin{matrix}c=5\\c=-5\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}2x+y+5=0\\2x+y-5=0\end{matrix}\right.\)

19 tháng 3 2020

Ta có : \(\overrightarrow{n_{AH}}=\left(3;1\right)\Rightarrow\overrightarrow{u_{AH}}=\overrightarrow{n_{BC}}=\left(1;-3\right)\)

PTTQ BC đi qua điểm B và nhân \(\overrightarrow{n_{BC}}\) làm VTPT :

\(1\left(x-2\right)-3\left(y+7\right)=0\)

\(\Leftrightarrow x-3y-23=0\)

Gọi \(M\left(a;b\right)\) . Vì \(M\in CM\Rightarrow a+2b+7=0\Rightarrow b=\frac{-a-7}{2}\) . Do đó \(M\left(a;\frac{-a-7}{2}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_A=2x_M-x_B=2a-2\\y_A=2y_M-y_B=-a\end{matrix}\right.\)

\(A\in AH\) \(\Rightarrow3\left(2a-2\right)-a+11=0\) \(\Leftrightarrow a=-1\)

\(\Rightarrow A\left(-4;1\right);M\left(-1;-3\right)\)

\(\overrightarrow{u_{AB}}=\left(6;-8\right)\Rightarrow\overrightarrow{n_{AB}}=\left(8;6\right)\)

PTTQ của AB : \(8\left(x-2\right)+6\left(y+7\right)=0\)

\(\Leftrightarrow4x+3y+13=0\)

\(C=CM\cap BC\Rightarrow C\left(5;-6\right)\)

\(\overrightarrow{u_{AC}}=\left(9;-7\right)\Rightarrow\overrightarrow{n_{AC}}=\left(7;9\right)\)

PTTQ của AC : \(7\left(x-5\right)+9\left(y+6\right)=0\)

\(\Leftrightarrow7x+9y+19=0\)

19 tháng 3 2020

Gọi $A\left( {{x}_{A}};{{y}_{A}} \right);C\left( {{x}_{C}};{{y}_{C}} \right)$

Phương trình đường cao qua $A:\left( d \right):3x+y+11=0$

$\overrightarrow{{{u}_{d}}}=\left( 3;1 \right)\Rightarrow \overrightarrow{AC}.\overrightarrow{u{{ & }_{d}}}=3\left( {{x}_{C}}-{{x}_{A}} \right)+1\left( {{y}_{C}}-{{y}_{A}} \right)=0$

Phương trình trung tuyến qua $C:\left( d' \right):x+2y+7=0$

$d\cap AB=M\left( \dfrac{2+{{x}_{A}}}{2};\dfrac{{{y}_{A}}-7}{2} \right)$

Ta có hệ phương trình: \(\left\{ \begin{array}{l} 3\left( {{x_C} - {x_A}} \right) + {y_C} - {y_A} = 0\\ 3{x_A} + {y_A} + 11 = 0\\ {x_C} + 2{y_C} + 7 = 0\\ \dfrac{{2 + {x_A}}}{2} + 2.\dfrac{{{y_A} - 7}}{2} + 7 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_A} = - 4\\ {y_A} = 1\\ {x_C} = - 1\\ {y_C} = - 8 \end{array} \right.\)

\(\begin{array}{l} \Rightarrow A\left( { - 4;1} \right);C\left( { - 1; - 8} \right) \Rightarrow \overrightarrow {AB} = \left( {2; - 8} \right);\overrightarrow {AC} = \left( {3; - 9} \right);\overrightarrow {BC} = \left( { - 3; - 1} \right)\\ AB:2\left( {x + 4} \right) - 8\left( {y - 1} \right) = 0 \Rightarrow 2x - 8y + 16 = 0\\ AC:3\left( {x + 1} \right) - 9\left( {y + 8} \right) = 0 \Rightarrow 3x - 9y - 69 = 0\\ BC: - 3\left( {x + 1} \right) - 1\left( {y + 8} \right) = 0 \Rightarrow - 3x - y - 11 = 0 \end{array}\)

NV
18 tháng 6 2020

Đường tròn tâm \(I\left(3;-1\right)\) bán kính \(R=\sqrt{3^2+\left(-1\right)^2-6}=2\)

Các đường thẳng gọi hết là d cho dễ kí hiệu

b/ \(\overrightarrow{MI}=\left(2;-4\right)=2\left(1;-2\right)\)

d đi qua M và vuông góc IM nên nhận (1;-2) là 1 vtpt

Pt d: \(1\left(x-1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+5=0\)

c/ Thay tọa độ N vào đường tròn thỏa mãn \(\Rightarrow N\in\left(C\right)\) \(\Rightarrow IN\perp d\)

\(\overrightarrow{IN}=\left(0;2\right)=2\left(0;1\right)\Rightarrow\) d nhận (0;1) là 1 vtpt và qua N

Pt d: \(0\left(x-3\right)+1\left(y-1\right)=0\Leftrightarrow y-1=0\)

d/ d song song d1 nên pt có dạng: \(5x+12y+c=0\) (với \(c\ne-2019\))

d tiếp xúc (C) nên \(d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|5.3-12.1+c\right|}{\sqrt{5^2+12^2}}=2\Leftrightarrow\left|c+3\right|=26\Rightarrow\left[{}\begin{matrix}c=23\\c=-29\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}5x+12y+23=0\\5x+12y-26=0\end{matrix}\right.\)

e/ Tiếp tuyến vuông góc d2 nên nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình d có dạng: \(2x-y+c=0\)

d tiếp xúc (C) \(\Rightarrow d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|2.3-1.\left(-1\right)+c\right|}{\sqrt{2^2+1^2}}=2\Leftrightarrow\left|c+7\right|=2\sqrt{5}\Rightarrow\left[{}\begin{matrix}c=-7+2\sqrt{5}\\c=-7-2\sqrt{5}\end{matrix}\right.\)

Có 2 tt thỏa mãn: \(\left[{}\begin{matrix}2x-y-7+2\sqrt{5}=0\\2x-y-7-2\sqrt{5}=0\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
27 tháng 3 2020

Bài 1:

PTĐTr có tâm $I(1,-2)$ có dạng:

$(C): (x-1)^2+(y+2)^2=R^2$

a)

Vì $(C)$ đi qua $A(3,5)$ nên $(3-1)^2+(5+2)^2=R^2$ hay $R^2=53$

Vậy PTĐTr có dạng $(x-1)^2+(y+2)^2=53$

b)

Vì $(C)$ tiếp xúc với $(d):x+y=1$ nên $d(I,(d))=R$

$\Leftrightarrow \frac{|1+(-2)-1|}{\sqrt{1^2+1^2}}=R$ hay $R=\sqrt{2}\Rightarrow R^2=2$

Vậy PTĐTr có dạng $(x-1)^2+(y+2)^2=2$

AH
Akai Haruma
Giáo viên
27 tháng 3 2020

Bài 2:
Viết lại PTĐTr: $(x-2)^2+(y+4)^2=25$

Tâm của đường tròn: $I(2,-4)$

Gọi $(d)$ là pt tiếp tuyến của đường tròn tại $A$. Khi đó $(d)$ nhận $\overrightarrow{IA}=(-3,4)$ là vecto pháp tuyến

Dạng của PT $(d)$ là:

$-3(x+1)+4(y-0)=0$ hay $-3x+4y=3$

b) Vecto pháp tuyến của đường thẳng $(d)$ cần tìm chính là vecto chỉ phương của $x+2y=0$ và bằng $(-2,1)$

Do đó PTĐT $(d)$ có dạng; $-2x+y+m=0(*)$

Ta có \(d(I,(d))=R\Leftrightarrow \frac{|-2.2+(-4)+m|}{\sqrt{(-2)^2+1^2}}=5\)

\(\Leftrightarrow |m-8|=5\sqrt{5}\Rightarrow m=8+5\sqrt{5}\) hoặc $m=8-5\sqrt{5}$

Đến đây thế vào $(*)$

4 tháng 4 2021

a, Phương trình tiếp tuyến đi qua M: \(ax+by-3a+b=0\left(\Delta\right)\)

Đường tròn đã cho có tâm \(I=\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Ta có: \(d\left(I;\Delta\right)=\dfrac{\left|a-2b-3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{5}\)

\(\Leftrightarrow\left(2a+b\right)^2=5\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a-2b\right)^2=0\)

\(\Leftrightarrow a=2b\)

\(\Rightarrow\Delta:2x+y-5=0\)

4 tháng 4 2021

b, Phương trình tiếp tuyến: \(\left(d\right)2x-y+m=0\left(m\in R\right)\)

Ta có: \(d\left(I;d\right)=\dfrac{\left|2.1-1.\left(-2\right)+m\right|}{\sqrt{5}}=\sqrt{5}\)

\(\Leftrightarrow\left|m+4\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}d:2x-y+1=0\\d:2x-y-9=0\end{matrix}\right.\)

6 tháng 5 2023

Vì `(C): x^2+y^2+2x-6y+5=0`

  `=>I(-1;3)`

Ta có: `\vec{IA}=(1;-2)`

`=>\vec{n_{\Delta}}=(1;-2)`

  Mà `A(0;1) in \Delta`

  `=>` PTTQ của `\Delta` là: `x-2(y-1)=0<=>x-2y+2=0`

NV
9 tháng 4 2021

1.

Tạo với Ox là tạo với tia Ox hay trục hoành nhỉ? 2 cái này khác nhau đấy. Tạo với tia Ox thì chỉ có 1 góc 60 độ theo chiều dương, tạo với trục hoành thì có 2 góc 60 và 120 đều thỏa mãn. Coi như tạo tia Ox đi

Đường tròn tâm \(I\left(-2;-2\right)\) bán kính \(R=5\)

\(tan60^0=\sqrt{3}\Rightarrow\) tiếp tuyến có hệ số góc bằng \(\sqrt{3}\Rightarrow\) pt có dạng:

\(y=\sqrt{3}x+b\Leftrightarrow\sqrt{3}x-y+b=0\)

\(d\left(I;d\right)=R\Leftrightarrow\dfrac{\left|-2\sqrt{3}+2+b\right|}{\sqrt{3+1}}=5\)

\(\Leftrightarrow\left|b+2-2\sqrt{3}\right|=10\Rightarrow\left[{}\begin{matrix}b=8+2\sqrt{3}\\b=-12+2\sqrt{3}\end{matrix}\right.\)

Có 2 tiếp tuyến: \(\left[{}\begin{matrix}\sqrt{3}x-y+8+2\sqrt{3}=0\\\sqrt{3}x-y-12+2\sqrt{3}=0\end{matrix}\right.\)

9 tháng 4 2021

Câu 2 đâu pa

23 tháng 4 2023

1D; 2D; 3D