\(\frac{1}{55.57}+\frac{1}{57.59}+...+\frac{1}{79+81}\)
giúp mình nhe!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1-(1/3.5+1/3.7+1//7.9+...+1/55.57)
=1-1/2.(2/3.5+2/5.7+2/7.9+...+2/55.57)
=1-1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/55-1/57)
=1-1/2(1/3-1/57)
=1-1/2.18/57
=1-9/57
=48/57
=
1-(1/3.5+1/5.7+1/7.9+....+1/53.55+1/55.57)
=1-1/2.[1/3-1/5+1/5-1/7+1/7-1/9+...+1/53-1/55+1/55-1/57]
=1-1/2.[1/3-1/57]
=1-1/2.54/171
=1-28/171
=143/171.
ta có \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}< \frac{1}{80}+\frac{1}{80}+..+\frac{1}{80}\)
ta có vế phải có 40 số , vế trái cũng có 40 số
VT=\(40\cdot\frac{1}{80}=\frac{40}{80}=\frac{1}{2}\)
do đó VT<1/2
Đặt B = 1/3 + 1/9 + 1/27 + 1/81 +1/243 + 1/729 + 1/2187
B x 3 = 3 x ( 1/3 + 1/9 +.......+ 1/729 + 1/2187)
= 1 + 1/3 + 1/9 +.........+1/243 +1/729
Lấy B x 3 - B ta có :
B x 3 - B = 1 + 1/3 +1/9+ .........+1/243 + 1/729 - 1/3 + 1/9 +.........+1/729 +1/2187
B x (3 - 1)= 1 - 1/2187
B x 2 = 2186/2187
B = 2186/2187 : 2 = 1093/2187
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{30}+...+\frac{1}{72}+\frac{1}{81}\)
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{8\times9}+\frac{1}{81}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{81}\)
\(A=1-\frac{1}{9}+\frac{1}{81}=\frac{73}{81}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{81}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{81}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{81}\)
\(=1-\frac{1}{9}+\frac{1}{81}\)
\(=\frac{8}{9}+\frac{1}{81}\)
\(=\frac{73}{81}\)
Dạng tổng quát :
\(\frac{1}{\sqrt{x}+\sqrt{x+2}}=\frac{\sqrt{x}-\sqrt{x+2}}{\left(\sqrt{x}+\sqrt{x+2}\right)\left(\sqrt{x}-\sqrt{x+2}\right)}\)
\(=\frac{\sqrt{x}-\sqrt{x+2}}{x-x-2}=\frac{\sqrt{x}-\sqrt{x+2}}{-2}=\frac{\sqrt{x+2}}{2}-\frac{\sqrt{2}}{2}\)
Từ đó :
\(H=\frac{\sqrt{3}}{2}-\frac{1}{2}+\frac{\sqrt{5}}{2}-\frac{\sqrt{3}}{2}+...+\frac{\sqrt{81}}{2}-\frac{\sqrt{79}}{2}\)
\(H=\frac{\sqrt{81}}{2}-\frac{1}{2}\)
\(H=\frac{9}{2}-\frac{1}{2}=4\)
tính chất đặc trwung của A
phân số thứ 2 sẽ có mẫu = phân số trước x 3
tử =1
VD: \(\frac{1}{a};\frac{1}{a.3};....\)
đây nhé