Tìm a đề HPT có 1 nghiệm duy nhất
\(\int^{x+xy+y=a+1}_{x^2y+y^2x=a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Để hệ có nghiệm duy nhất thì m/2<>-2/-m
=>m^2<>4
=>m<>2 và m<>-2
a) Thay \(m=1\) vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy ...
b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=2m-1-3x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=-m-1\end{matrix}\right.\)
Ta có: \(x^2+y^2=5\)
\(\Rightarrow m^2+m^2+2m+1=5\) \(\Leftrightarrow m^2+m-2=0\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
Vậy ...
c) Hệ phương trình luôn có nghiệm duy nhất
Ta có: \(x-3y>0\)
\(\Rightarrow m-3\left(-m-1\right)>0\)
\(\Leftrightarrow4m+3>0\) \(\Leftrightarrow m>-\dfrac{3}{4}\)
Vậy ...
a) Thay m=1 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=5-2\cdot2=1\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)
a) Thay m=1 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\3x-y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\3x=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)
\(\int^{\left(x+y\right)+xy=a+1}_{\left(x+y\right)xy=a}\Leftrightarrow\int^{s+p=a+1}_{sp=a}\Leftrightarrow s;p\in x;x^2-\left(a+1\right)x+a=0\)
\(\Delta=\left(a+1\right)^2-4a=a^2-2a+1=\left(a-1\right)^2\ge0\)với mọi a
=> \(x_1=\frac{\left(a+1\right)+\left|a-1\right|}{2};x_2=\frac{\left(a+1\right)-\left|a-1\right|}{2}\)
+ Với a =1 => s =p =(a+1)/2 =1 => x;y là nghiệm của pt : x2 -x +1 =0 => vô nghiệm.
+Với a>1 => s =a ;p=1 hoặc s=1;p=a => x;y là nghiệm của pt : x2 - ax +1=0 (1) hoặc x2 -x +a =0 (2)
Hệ có nghiệm duy nhất khi (1) có nghiệm duy nhất \(\Delta=a^2-4=0\Leftrightarrow a=2>1\)( TM) a =-2 loại
Hệ có nghiệm duy nhất khi (2 ) có nghiệm duy nhất \(\Delta=1^2-a=0\Leftrightarrow a=1\)loại
+a <1 => s =a ;p=1 như TH a> 1 => a=-2 (TM)
Vậy a =2 hoặc a =-2 thì hệ PT có nghiệm duy nhất
Ai giusp mik **** cho 2 hoặc 3 người trong 1 câu hỏi với