K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2020

Áp dụng BĐT Cauchy - Schawrz dạng Engel, ta có: 

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{\left(a+b+c\right)}{2}=\frac{2}{2}=1\)

Vậy..

NV
12 tháng 10 2019

\(\Leftrightarrow\frac{a^2}{3}+b^2+4c^2-ab-2bc-2ca>0\)

\(\Leftrightarrow\frac{a^2}{4}+\left(b^2+4bc+4c^2\right)-a\left(b+2c\right)+\frac{a^2}{12}-6bc>0\)

\(\Leftrightarrow\frac{a^2}{4}+\left(b+2c\right)^2-a\left(b+2c\right)+\frac{a^2-36bc}{12}>0\)

\(\Leftrightarrow\left(\frac{a}{2}-b-2c\right)^2+\frac{a^3-36abc}{12a}>0\)

\(\Leftrightarrow\left(\frac{a}{2}-b-2c\right)^2+\frac{a^3-36}{12a}>0\) (1)

Do \(a^3>36\Rightarrow\left\{{}\begin{matrix}a>0\\a^3-36>0\end{matrix}\right.\) \(\Rightarrow\frac{a^3-36}{12a}>0\)

\(\Rightarrow\left(1\right)\) luôn đúng

2 tháng 1 2018

post ít một thôi