cho tam giác ABC, có 3 đường cao AH, BK,CI, chứng minh: BC2 =BA.BI + CK.CA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi giao của AH với BC là E
=>AH vuông góc BC tại E
Xét ΔBIC vuông tại I và ΔBEA vuông tại E có
góc EBA chung
=>ΔBIC đồng dạng với ΔBEA
=>BI/BE=BC/BA
=>BE*BC=BA*BI
Xét ΔCKB vuông tại K và ΔCEA vuông tại E có
góc KCB chung
=>ΔCKB đồng dạng với ΔCEA
=>CK/CE=CB/CA
=>CK*CA=CE*CB
BI*BA+CK*CA
=BE*BC+CE*BC
=BC^2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔABK vuông tại K và ΔACI vuông tại I có
\(\widehat{BAK}\) chung
Do đó: ΔABK∼ΔACI(g-g)
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AI\cdot AB=AK\cdot AC\)(đpcm)
b) Ta có: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(cmt)
nên \(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)
Xét ΔAIK và ΔACB có
\(\dfrac{AK}{AB}=\dfrac{AI}{AC}\)(cmt)
\(\widehat{IAK}\) chung
Do đó: ΔAIK\(\sim\)ΔACB(c-g-c)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,b: Xét ΔOIB vuông tạiI và ΔOKC vuông tại K có
góc IOB=góc KOC
=>ΔOIB đồng dạng vơi ΔOKC
=>OI/OK=OB/OC
=>OI*OC=OK*OB
c: Xét ΔBOH vuông tại H và ΔBCK vuông tại K có
góc OBH chung
=>ΔBOH đồng dạng với ΔBCK
d: Xét ΔCHO vuông tại H và ΔCIB vuông tại I có
góc HCO chung
=>ΔCHO đồng dạng với ΔCIB
=>CH/CI=CO/CB
=>CH*CB=CI*CO
ΔBOH đồng dạng với ΔBCK
=>BO/BC=BH/BK
=>BO*BK=BH*BC
BO*BK+CO*CI=BH*BC+CH*BC=BC^2
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xet ΔCHA vuông tại H và ΔCKB vuông tại K có
góc C chung
=>ΔCHA đồng dạng với ΔCKB
b: Xét ΔCAB có
AH,BK là đừog cao
AH cắt BK tại D
=>D là trực tâm
=>CD vuông góc AB tại E
góc CHA=góc CEA=90 độ
=>CHEA nội tiếp
=>góc BHE=góc BAC
mà góc HBE chung
nên ΔBEH đồng dạng với ΔBAC
c: góc KHD=góc ACE
góc EHA=góc KBA
mà góc ACE=góc KBA
nên góc KHD=góc EHD
=>HA là phân giác của góc EHK
![](https://rs.olm.vn/images/avt/0.png?1311)
a Xét \(\Delta ABK\) và \(\Delta ACI\) có:
\(\Lambda BAK=\Lambda CAI\left(gt\right)\)
\(\Lambda AKB=\Lambda AIC=90^0\left(gt\right)\)
\(\Rightarrow\Delta ABK\sim\Delta ACI\left(g.g\right)\Rightarrow\dfrac{AB}{AC}=\dfrac{AK}{AI}\Rightarrow AB\cdot AI=AC\cdot AK\)
a) Xét ΔABK vuông tại K và ΔACI vuông tại I có
\(\widehat{BAK}\) chung
Do đó: ΔABK∼ΔACI(g-g)
Suy ra: \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AI\cdot AB=AK\cdot AC\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tam giác \(ABK\) và tam giác \(ACI\) ta có:
\(\widehat{A}\) chung
\(\widehat{AKB}=\widehat{AIC}\left(=90^o\right)\)
Suy ra \(\Delta ABK~\Delta ACI\left(g.g\right)\)
suy ra \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\Leftrightarrow\dfrac{AK}{AB}=\dfrac{AI}{AC}\).