Giải bất phương trình :\(\frac{x}{4-x}< 0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ \(x\ge0;x\ne1\)
\(\frac{1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)(Thoả mãn \(x\ne1\))
Vậy \(0\le x< 1\)
\(\frac{x-5}{3}< \frac{x-8}{4}\Rightarrow4.\left(x-5\right)< 3.\left(x-8\right)\Rightarrow4x-20< 3x-24\Rightarrow x< -4\)
a) \(\frac{x-5}{3}< \frac{x-8}{4}\)
<=> \(\frac{4\left(x-5\right)}{12}< \frac{3\left(x-8\right)}{12}\)
<=> \(4\left(x-5\right)< 3\left(x-8\right)\)
<=> \(4x-20< 3x-24\)
<=> \(4x-3x< 20-24\)
<=> \(x< -4\)
Vậy bất phương trình có tập nghiệm là { x l x < -4 }
b) \(\frac{x+3}{4}+1< x+\frac{x+2}{3} \)
<=> \(\frac{3\left(x+3\right)}{12}+\frac{12}{12}< \frac{12x}{12}+\frac{4\left(x+2\right)}{12}\)
<=> \(3\left(x+3\right)+12< 12x+4\left(x+2\right)\)
<=> \(3x+9+12< 12x+4x+8\)
<=> \(3x-12x-4x< 8-9-12\)
<=> \(-13x< -13\)
<=> \(x>1\)
Vậy bất phương trình có tập nghiệm là { x l x > 1 }
\(\frac{2}{3-x}<0\)
=>\(\frac{2}{3-x}<\frac{0}{x-3}\)
=>2<0
=>vô lí
\(ĐKXĐ:x\ne3\)
Ta có: \(\frac{2}{x-3}<0<=>x-3<0\) (vì 2 >0)
<=> x<3
1) \(\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{4x+15}{9-x^2}\)
ĐKXĐ : \(x\ne\pm3\)
\(\Leftrightarrow\frac{x-1}{x+3}-\frac{x}{x-3}=\frac{-4x-15}{x^2-9}\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{x^2+3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{x^2-4x+3-x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{-4x-15}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow-7x+3=-4x-15\)
\(\Leftrightarrow-7x+4x=-15-3\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=6\)( tmđk )
Vậy x = 6 là nghiệm của phương trình
2) 2x + 3 < 6 - ( 3 - 4x )
<=> 2x + 3 < 6 - 3 + 4x
<=> 2x - 4x < 6 - 3 - 3
<=> -2x < 0
<=> x > 0
Vậy nghiệm của bất phương trình là x > 0
a) \(\left(x+\frac{1}{9}\right)\left(2x-5\right)< 0\)
TH1 : \(\hept{\begin{cases}x+\frac{1}{9}>0\\2x-5< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{-1}{9}\\x< \frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\frac{-1}{9}< x< \frac{5}{2}\)( thỏa )
TH2 : \(\hept{\begin{cases}x+\frac{1}{9}< 0\\2x-5>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< -\frac{1}{9}\\x>\frac{5}{2}\end{cases}}\)
\(\Leftrightarrow\frac{5}{2}< x< -\frac{1}{9}\)( loại )
Vậy....
b) \(x^2-6x+9< 0\)
\(\Leftrightarrow\left(x-3\right)^2< 0\)( vô lý )
Vậy bpt vô nghiệm
\(\frac{x}{4-x}< 0\left(x\ne4\right)\)
+) \(\hept{\begin{cases}x>0\\4-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x>0\\x>4\end{cases}\Rightarrow}x>4}\)
+) \(\hept{\begin{cases}x< 0\\4-x>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0\\x< 4\end{cases}\Rightarrow}x< 0}\)
vậy x > 4 hoặc x < 0 thì ....
Bài làm
Ta có: \(\frac{x}{4-x}< 0\)
\(\Leftrightarrow\frac{x}{4-x}.\left(4-x\right)< 0.\left(4-x\right)\)
\(\Leftrightarrow4x-x^2< 0\)
\(\Leftrightarrow x\left(4-x\right)< 0\)
\(\Leftrightarrow\orbr{\begin{cases}x< 0\\4-x< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 0\\x< 4\end{cases}}\)
Vậy nghiệm phương trình là: x < 0 hoặc x<4
# Mik chưa học bài này, nên nếu sai thì cho xin lỗi #