a>0 tìm min của S=a/a^2+1 + 5.(a^2+1)/2a
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NT
1
31 tháng 8 2017
Theo cauchy ta có \(S=\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}\ge2\sqrt{\frac{a}{a^2+1}.\frac{5\left(a^2+1\right)}{2a}}=2.\sqrt{\frac{5}{2}}=\sqrt{10}\)
NH
0
M
1
12 tháng 11 2018
\(A\ge\frac{\left(1+1\right)^2}{2a+b+a+2b}=\frac{4}{3\left(a+b\right)}=\frac{4}{3.16}=\frac{1}{12}\) ( Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=8\)
Vì a > 0 => a; a^2 + 1> 0 => a/a^2+1 >0 và a^2+1/2a > 0
Áp dụng co si cho hai số không âm ta có:
\(\frac{a}{a^2+1}+\frac{5\left(a^2+1\right)}{2a}=\frac{a}{a^2+1}+\frac{a^2+1}{4a}+\frac{9\left(a^2+1\right)}{4a}\)
\(\ge2\sqrt{\frac{a}{a^2+1}.\frac{a^2+1}{4a}}+\frac{9.2a}{4a}\)
\(=1+\frac{9}{2}=\frac{11}{2}\)
Dấu "=" xảy ra <=> a = 1
Vậy min S = 11/2 tại a = 1