1, cho 2 số thực x,y thỏa mãn x+y=3;xy=1. Tính giá trị của biểu thức P=x5+y5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Từ giả thiết ta có:
\(x+y=3\left(\sqrt{x+1}+\sqrt{y+2}\right)\le3\sqrt{2\left(x+y+3\right)}\)
\(\Leftrightarrow P\le3\sqrt{2\left(P+3\right)}\)
\(\Leftrightarrow\left\{{}\begin{matrix}P\ge0\\18P+54\ge P^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}P\ge0\\P^2-18P-54\le0\end{matrix}\right.\)
\(\Leftrightarrow0\le P\le9+3\sqrt{15}\)
\(\Rightarrow maxP=9+3\sqrt{15}\Leftrightarrow\left(x;y\right)=\left(\dfrac{10+3\sqrt{15}}{2};\dfrac{8+3\sqrt{15}}{2}\right)\)
\(x^2+y^2=\left(x+y\right)^2-2xy=9-2=7\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.1.3=18\)
\(P=x^5+y^5=\left(x^3+y^3\right)\left(x^2+y^2\right)-\left(x^2y^3+x^3y^2\right)\)
\(=\left(x^3+y^3\right)\left(x^2+y^2\right)-\left(xy\right)^2\left(x+y\right)\)
\(=18.7-1^2.3=123\)
Ta có: x + y = 3; xy = 1
Xét tất cả các trường hợp với x, y là số thực ta tìm được:
x = \(\frac{3-\sqrt{5}}{2}\); y = \(\frac{3+\sqrt{5}}{2}\) hoặc x = \(\frac{3+\sqrt{5}}{2}\); y = \(\frac{3-\sqrt{5}}{2}\)
P = x5 + y5
Thay x = \(\frac{3-\sqrt{5}}{2}\); y = \(\frac{3+\sqrt{5}}{2}\) vào P trên ta được:
P = \(\frac{3-\sqrt{5}}{2}+\frac{3+\sqrt{5}}{2}=\frac{6}{2}=3\)
Vậy P = 3 nếu x = \(\frac{3-\sqrt{5}}{2}\); y = \(\frac{3+\sqrt{5}}{2}\)
Thay x = \(\frac{3+\sqrt{5}}{2}\); y = \(\frac{3-\sqrt{5}}{2}\) vào P ta cũng được P = 3 (do tính chất giao hoán của phép cộng)
Chúc bn học tốt!!