K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2021

\(\sqrt{8}+5\sqrt{2}-\sqrt{32}+6\sqrt{\frac{1}{2}}=2\sqrt{2}+5\sqrt{2}-4\sqrt{2}+3\sqrt{2}=\sqrt{2}\left(2+5-4+3\right)=6\sqrt{2}\)

29 tháng 3 2022

yggucbsgfuyvfbsudy

30 tháng 3 2022

????????

15 tháng 7 2019

Để học tốt Toán 9 | Giải bài tập Toán 9

= (2√2 - 3√2 + 10)√2 - √5

= 2.(√2)2 - 3.(√2)2 + √10.√2 - √5

= 4 - 6 + √20 - √5 = -2 + 2√5 - √5

= -2 + √5

Để học tốt Toán 9 | Giải bài tập Toán 9

= 0,2.10.√3 + 2|√3 - √5|

s

= 2√3 + 2(√5 - √3)

= 2√3 + 2√5 - 2√3 = 2√5

Để học tốt Toán 9 | Giải bài tập Toán 9

17 tháng 7 2023

1) \(\sqrt{6+4\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)

\(=\sqrt{2^2+2\cdot2\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{3^2-2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=\left|2+\sqrt{2}\right|-\left|3-\sqrt{2}\right|\)

\(=2+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}-1\)

2) \(\sqrt{21-4\sqrt{5}}+\sqrt{21+4\sqrt{5}}\)

\(=\sqrt{20-4\sqrt{5}+1}+\sqrt{20+4\sqrt{5}+1}\)

\(=\sqrt{\left(2\sqrt{5}\right)^2-2\sqrt{5}\cdot2\cdot1+1^2}+\sqrt{\left(2\sqrt{5}\right)^2+2\sqrt{5}\cdot2\cdot1-1^2}\)

\(=\sqrt{\left(2\sqrt{5}-1\right)^2}+\sqrt{\left(2\sqrt{5}+1\right)^2}\)

\(=\left|2\sqrt{5}-1\right|+\left|2\sqrt{5}+1\right|\)

\(=2\sqrt{5}-1+2\sqrt{5}+1\)

\(=4\sqrt{5}\)

22 tháng 5 2018

a, a+8

b, b+45

4 tháng 11 2020

goi y nha A=1/2.(3^2-1)(3^2+1)....(3^32+1)

23 tháng 2 2018

Rút gọn ak bn: A=(12+22+32+42+52)+(62+72+82+92+102)

                         A=(1+2+3+4+5+6+7+8+9+10)2

                              A=552

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Vì đây toàn là số cụ thể rồi nên không có đkxđ bạn nhé.

Lời giải:
a.

$=\sqrt{2}+4\sqrt{2}+6\sqrt{2}-3\sqrt{2}=8\sqrt{2}$
b.

$=\frac{13(5-2\sqrt{3})}{(5+2\sqrt{3})(5-2\sqrt{3})}+2\sqrt{3}=\frac{13(5-2\sqrt{3})}{13}+2\sqrt{3}$

$=5-2\sqrt{3}+2\sqrt{3}=5$

c.

$=2\sqrt{5}-|2-\sqrt{5}|=2\sqrt{5}-(\sqrt{5}-2)=\sqrt{5}+2$

12 tháng 6 2023

\(\sqrt{9-3\sqrt{8}}-\dfrac{\sqrt{3}-1}{\sqrt{2}}+\sqrt{5-2\sqrt{6}}-\sqrt{2-\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-2.\sqrt{6}.\sqrt{3}+\left(\sqrt{3}\right)^2}-\dfrac{\sqrt{6}-\sqrt{2}}{2}+\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}-\dfrac{\sqrt{6}-\sqrt{2}}{2}\)

\(=\sqrt{\left(\sqrt{6}-\sqrt{3}\right)^2}-\sqrt{6}+\sqrt{2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{6}-\sqrt{3}\right|-\sqrt{6}+\sqrt{2}+\left|\sqrt{3}-\sqrt{2}\right|\)

\(=\sqrt{6}-\sqrt{3}-\sqrt{6}+\sqrt{2}+\sqrt{3}-\sqrt{2}\) (do \(\sqrt{6}-\sqrt{3}>0;\sqrt{3}-\sqrt{2}>0\))

\(=0\)

\(=\sqrt{9-6\sqrt{2}}-\dfrac{\sqrt{6}-\sqrt{2}}{2}+\sqrt{3}-\sqrt{2}-\dfrac{1}{\sqrt{2}}\left(\sqrt{3}-1\right)\)

\(=\sqrt{6}-\sqrt{3}-\dfrac{1}{2}\sqrt{6}+\dfrac{1}{2}\sqrt{2}+\sqrt{3}-\sqrt{2}-\dfrac{1}{2}\sqrt{6}+\dfrac{1}{2}\sqrt{2}\)

\(=0\)