Cho tam giác ABC. Tìm trên đường phân giác ngoài tại A điểm M sao cho MA + MC là nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC. Tìm trên đường phân giác ngoài của góc A điểm M sao cho MB+MC đạt giá trị nhỏ nhất
mình nghĩ đề cho bổ sung là cho tam giác ABC đều nội tiếp đường tròn ( O ) vì mình đã từng làm rồi
lời giải :
A B C O M D
a) vì MD = MB nên \(\Delta MBD\)cân tại M
\(\widehat{BMD}=\widehat{BCA}=60^o\)( cùng chắn cung AB )
\(\Rightarrow\)\(\Delta MBD\)đều
b) Xét \(\Delta MBC\)và \(\Delta BDA\)có :
MB = BD ; BC = AB ; \(\widehat{MBC}=\widehat{DBA}\)( cùng cộng góc DBC bằng 60 độ )
\(\Rightarrow\Delta MBC=\Delta DBA\left(c.g.c\right)\)suy ra MC = AD
c) Mà MB = MD ( câu a )
nên MC + MB = MD + AD = MA
d) Ta có : MA là dây cung của ( O ; R ) \(\Rightarrow MA\le2R\)
\(\Rightarrow MB+MC+MA=2MA\le4R\)( không đổi )
Dấu " = " xảy ra \(\Leftrightarrow\)MA là đường kính hay M là điểm chính giữa của cung BC
Lấy điểm D đối xứng với điểm C qua đường thẳng AE.
=> AE là đường trung trực của CD =>ED = EC
=> EB + EC = EB + ED.
Suy ra điểm E trùng với điểm A thì giá trị của tổng EB + EC nhỏ nhất.
Khi đó, chu vi của tam giác EBC cũng là nhỏ nhất
thay cung giao bi nay cho mih