Tìm giá trị lớn nhất của biểu thức M = 6/(20x^6-(8-40y) x^3+25y^2-5).
Giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa: \(M=\frac{6}{20x^6-\left(8-40y\right)x^2+25y^2-5}\)
Đặt \(N=20x^6-\left(8-40y\right)x^2+25y^2+5\)
\(=20\left[x^6-2x^3\frac{1-5y}{5}+\left(\frac{1-5y}{5}\right)^2\right]+25y^2-20\left(\frac{1-5y}{5}\right)^2=5\)
\(=20\left(x^3-\frac{1-5y}{5}\right)^2+25y^2-\frac{4}{5}+8y-20y^2+5=20\left(x^3-\frac{1-5y}{2}\right)^2+5\left(y+\frac{4}{5}\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}y=\frac{-4}{5}\\x=1\end{cases}\Rightarrow M=\frac{6}{N}\le\frac{6}{1}=6}\)
Vậy Max M=6 đạt được khi x=1; y=-4/5
\(M=\frac{6}{\left(4x^6-8x^3+4\right)+\left(16x^6+40x^3y+25y^2\right)-9}\)
\(M=\frac{6}{\left(2x^3-2\right)^2+\left(4x^3+5y\right)^2-9}\)
Biểu thức này chỉ tồn tại GTNN, không tồn tại GTLN
Ta cóa : \(20x^6-\left(8-40y\right)x^3+25y^2-5\)
\(=20x^6-8x^3+40x^3y+25y^2-5\)
\(=16x^6+40x^3y+25y^2+4x^6-8x^3+4-9\)
\(=\left(4x^3+5y\right)^2+4\left(x^3-1\right)^2-9\)
Ta thấy ngay \(\left(4x^3+5y\right)^2\ge0;4\left(x^3-1\right)^2\ge0\)
\(\Rightarrow\left(4x^3+5y\right)^2+4\left(x^3-1\right)^2-9\ge-9\)
\(\Rightarrow M=\frac{6}{20x^6-\left(8-40y\right)x^3+25y^2-5}\le\frac{6}{-9}=-\frac{2}{3}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}4x^3+5y=0\\x^3-1=0\end{cases}\Leftrightarrow x=1;y=-\frac{4}{5}}\)
hình như bạn viết thiếu đề thì phải? phải có giá trị của x bằng bao nhiêu mới tính được.
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)