Tìm x biết (x-5)2016=(x-5)2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x – 5)2016 = (x – 5)2018
=> (x – 5)2018 – (x – 5)2016 = 0
=> (x – 5)2016.[(x – 5)2 – 1] = 0
=> x – 5 = 0 hoặc x – 5 = 1 hoặc x – 5 = -1
=> x = 5 hoặc x = 6 hoặc x = 4 (Thỏa mãn x ∈ N).
Vậy x ∈ {4; 5; 6}.
Bài làm:
Pt <=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-3}{2018}-1\right)+\left(\frac{x-5}{2016}-1\right)+\left(\frac{x-7}{2014}-1\right)=4-4\)
\(\Leftrightarrow\frac{x-2021}{2020}+\frac{x-2021}{2018}+\frac{x-2021}{2016}+\frac{x-2021}{2014}=0\)
\(\Rightarrow x-2021=0\Rightarrow x=2021\)
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\frac{x+2015}{5}+1+\frac{x+2016}{4}+1=\frac{x+2017}{3}+1+\frac{x+2018}{2}+1\)
\(\frac{x+2015}{5}+\frac{5}{5}+\frac{x+2016}{4}+\frac{4}{4}=\frac{x+2017}{3}+\frac{3}{3}+\frac{x+2018}{2}+\frac{2}{2}\)
\(\frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\)
\(\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\left(x+2020\right).\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
mà \(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\ne0\)nên
\(x+2020=0\)
\(x=-2020\)
Cộng 1 vào 2 vế ta có
\(\frac{x+2015}{5}+1+\frac{x+2016}{4}+1=\frac{x+2017}{3}+1+\frac{x+2018}{2}+1\)
\(\left(\frac{x+2015}{5}+\frac{5}{5}\right)+\left(\frac{x+2016}{4}+\frac{4}{4}\right)=\left(\frac{x+2017}{3}+\frac{3}{3}\right)+\left(\frac{x+2018}{2}+\frac{2}{2}\right)\)
\(\frac{x+2020}{5}+\frac{x+2020}{4}=\frac{x+2020}{3}+\frac{x+2020}{2}\)
\(\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
Vì \(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\ne0\)
nên \(x+2020=0\Rightarrow x=-2020\)
Ta có: \(\frac{x-2019}{2018}+\frac{x-2018}{2017}=\frac{x-2017}{2016}+\frac{x-2016}{2015}\)
\(\Leftrightarrow\left(\frac{x-2019}{2018}+1\right)+\left(\frac{x-2018}{2017}+1\right)=\left(\frac{x-2017}{2016}+1\right)+\left(\frac{x-2016}{2015}+1\right)\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}=\frac{x-1}{2016}+\frac{x-1}{2015}\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}-\frac{x-1}{2016}-\frac{x-1}{2015}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
\(\Leftrightarrow x-1=0\)( vì \(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\ne0\))
\(\Leftrightarrow x=1\)
Vạy x=1
Nghiệm?
\(\left(x-5\right)^{2016}+\left(x-5\right)^{2018}=0\\ \Rightarrow\left(x-5\right)^{2016}\left[1+\left(x-5\right)^2\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(x-5\right)^{2016}=0\\1+\left(x-5\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^2=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x\in\varnothing\end{matrix}\right.\)
vì (x-2016)^2016 >= 0 vs mọi x
(y-2017)^2018>= 0 vs mọi y
/x+y-z/ >= 0 vs mọi x,y,z
mà (x-2016)^2016+(y-2017)^2018+/x-y+z/=\(\hept{\begin{cases}\left(x-2016\right)^{2016}=0\\^{\left(-2017\right)^{2018}}=0\\x+y-z=0\end{cases}}\)0 nên \(\hept{\begin{cases}x-2016=0\\y-2017=0\\x+y-z\end{cases}}\)\(\hept{\begin{cases}x=2016\\y=2017\\x+y-z=0\end{cases}}\)
mà x+y=2016+2017=4033
\(\Rightarrow\)4033-z=0
z=4033
vậy x=2016 y=2017 z=4033
Tìm x biết
(x-5)2016=(x-5)2018
=> (x-5)2016 - (x-5)2018 = 0
=> (x-5)2016 [ 1 - ( x - 5 )2 ] = 0
=> \(\orbr{\begin{cases}\left(x-5\right)^{2016}=0\\1-\left(x-5\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}}\)
=> \(\orbr{\begin{cases}x=5\\x-5=\pm1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=6hoacx=4\end{cases}}}\)