K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

\(\left(x+1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-2=0\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+1-2=0\)

\(\Leftrightarrow3x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

Vậy phương trình đã cho có tập nghiệm \(S=\left\{-1;0\right\}\)

12 tháng 12 2024

câu này mà cũng phải hỏi

Nguu vãi 

26 tháng 10 2017

Trần văn ổi ()

26 tháng 10 2017

đù khó thế

9 tháng 1 2024

1) Do x ∈ Z và 0 < x < 3

⇒ x ∈ {1; 2}

2) Do x ∈ Z và 0 < x ≤ 3

⇒ x ∈ {1; 2; 3}

3) Do x ∈ Z và -1 < x ≤ 4

⇒ x ∈ {0; 1; 2; 3; 4}

a: \(\dfrac{x+5}{x-1}+\dfrac{8}{x^2-4x+3}=\dfrac{x+1}{x-3}\)

=>(x+5)(x-3)+8=x^2-1

=>x^2+2x-15+8=x^2-1

=>2x-7=-1

=>x=3(loại)

b: \(\dfrac{x-4}{x-1}-\dfrac{x^2+3}{1-x^2}+\dfrac{5}{x+1}=0\)

=>(x-4)(x+1)+x^2+3+5(x-1)=0

=>x^2-3x-4+x^2+3+5x-5=0

=>2x^2+2x-6=0

=>x^2+x-3=0

=>\(x=\dfrac{-1\pm\sqrt{13}}{2}\)

e: =>x^2-2x+1+2x+2=5x+5

=>x^2+3=5x+5

=>x^2-5x-2=0

=>\(x=\dfrac{5\pm\sqrt{33}}{2}\)

g: (x-3)(x+4)*x=0

=>x=0 hoặc x-3=0 hoặc x+4=0

=>x=0;x=3;x=-4

19 tháng 4 2020

Giúp luôn Đức Hải Nguyễn câu e:

e, (x - 1)2 + 2(x - 1)(x + 2) + (x + 2)2 = 0

\(\Leftrightarrow\) (x - 1 + x + 2)2 = 0

\(\Leftrightarrow\) (2x + 1)2 = 0

\(\Leftrightarrow\) 2x + 1 = 0

\(\Leftrightarrow\) x = \(\frac{-1}{2}\)

Vậy S = {\(\frac{-1}{2}\)}

Chúc bn học tốt!!

19 tháng 4 2020

a) (x - 3)(5 - 2x) = 0

<=> \(\left[{}\begin{matrix}x-3=0\\5-2x=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=3\\x=\frac{5}{2}\end{matrix}\right.\)

b) (x + 5)(x - 1) - 2x(x - 1) = 0

<=> (x - 1)(x + 5 - 2x) = 0

<=> (x - 1)(5 - x) = 0

<=> \(\left[{}\begin{matrix}x-1=0\\5-x=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

c) 5(x + 3)(x - 2) - 3(x + 5)(x - 2) = 0

<=> (x - 2)[5(x + 3) - 3(x + 5)] = 0

<=> (x - 2)(5x + 3 - 3x - 15) = 0

<=> (x - 2)(2x - 12) = 0

<=> \(\left[{}\begin{matrix}x-2=0\\2x-12=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

d) (x - 6)(x + 1) - 2(x + 1) = 0

<=> (x + 1)(x - 6 - 2) = 0

<=> (x + 1)(x - 8) = 0

<=> \(\left[{}\begin{matrix}x+1=0\\x-8=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)

Câu e thì để mình nghĩ đã :)

#Học tốt!

24 tháng 9 2020

a) \(x^3=x^5\)

=> \(x^3-x^5=0\)

=> \(x^3\left(1-x^2\right)=0\)

=> \(\orbr{\begin{cases}x^3=0\\1-x^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b) \(4x\left(x+1\right)=x+1\)

=> \(4x^2+4x-x-1=0\)

=> \(4x\left(x+1\right)-1\left(x+1\right)=0\)

=> \(\left(x+1\right)\left(4x-1\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{4}\end{cases}}\)

c) \(x\left(x-1\right)-2\left(1-x\right)=0\)

=> \(x\left(x-1\right)-\left[-2\left(x+1\right)\right]=0\)

=> \(x\left(x-1\right)+2\left(x-1\right)=0\)

=> \(\left(x-1\right)\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

d) Kết quả ?

e) \(\left(x-3\right)^2+3-x=0\)

=> \(x^2-6x+9+3-x=0\)

=> \(x^2-7x+12=0\)

=> \(x^2-3x-4x+12=0\)

=> \(x\left(x-3\right)-4\left(x-3\right)=0\)

=> (x - 4)(x - 3) = 0

=> \(\orbr{\begin{cases}x=4\\x=3\end{cases}}\)

f) Tương tự

25 tháng 6 2016

a)\(3x\left(x-1\right)+x-1=0\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\Leftrightarrow\hept{\begin{cases}x-1=0\\3x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}}\)

\(S=\left\{1;\frac{1}{3}\right\}\)

b)\(2\left(x+3\right)-x^2-3x=0\)

\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow\left(2-x\right)\left(x+3\right)=0\Leftrightarrow\hept{\begin{cases}2-x=0\\x+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=-3\end{cases}}}\)

\(S=\left\{2;-3\right\}\)

29 tháng 9 2018

\(2x^3-50x=0\)

<=>  \(2x\left(x^2-25\right)=0\)

<=>   \(2x\left(x-5\right)\left(x+5\right)=0\)

đến đây

bạn tự giải nhé

hk tốt   

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) \(2{x^2} + 3x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 2{x^2} + 3x + 1\) có 2 nghiệm phân biệt \(x =  - 1,x = \frac{{ - 1}}{2}\)

hệ số \(a = 2 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow \left[ \begin{array}{l}x \le  - 1\\x \ge  - \frac{1}{2}\end{array} \right.\)

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right] \cup \left[ { - \frac{1}{2}; + \infty } \right)\)

b) \( - 3{x^2} + x + 1 > 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + x + 1\) có 2 nghiệm phân biệt \(x = \frac{{1 - \sqrt {13} }}{6},x = \frac{{1 + \sqrt {13} }}{6}\)

Hệ số \(a =  - 3 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) > 0\)\( \Leftrightarrow \frac{{1 - \sqrt {13} }}{6} < x < \frac{{1 + \sqrt {13} }}{6}\)

Vậy tập nghiệm của bất phương trình là \(\left( {\frac{{1 - \sqrt {13} }}{6};\frac{{1 + \sqrt {13} }}{6}} \right)\)

c) \(4{x^2} + 4x + 1 \ge 0\)

Tam thức bậc hai \(f\left( x \right) = 4{x^2} + 4x + 1\) có nghiệm duy nhất \(x = \frac{{ - 1}}{2}\)

hệ số \(a = 4 > 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) \ge 0 \Leftrightarrow x \in \mathbb{R}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\)

d) \( - 16{x^2} + 8x - 1 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 16{x^2} + 8x - 1\) có nghiệm duy nhất \(x = \frac{1}{4}\)

hệ số \(a =  - 16 < 0\)

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy \(f\left( x \right) < 0 \Leftrightarrow x \ne \frac{1}{4}\)

Vậy tập nghiệm của bất phương trình là \(\mathbb{R}\backslash \left\{ {\frac{1}{4}} \right\}\)

e) \(2{x^2} + x + 3 < 0\)

Ta có \(\Delta  = {1^2} - 4.2.3 =  - 23 < 0\) và có \(a = 2 > 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \(2{x^2} + x + 3\) mang dấu “-” là \(\emptyset \)

Vậy tập nghiệm của bất phương trình \(2{x^2} + x + 3 < 0\) là \(\emptyset \)

g) \( - 3{x^2} + 4x - 5 < 0\)

Tam thức bậc hai \(f\left( x \right) =  - 3{x^2} + 4x - 5\) có \(\Delta ' = {2^2} - \left( { - 3} \right).\left( { - 5} \right) =  - 11 < 0\) và có \(a =  - 3 < 0\)

Sử dụng định lí về dấu của tam thức bậc hai, ta thấy tập hợp những giá trị của x sao cho \( - 3{x^2} + 4x - 5\) mang dấu “-” là \(\mathbb{R}\)

Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 4x - 5 < 0\) là \(\mathbb{R}\)

23 tháng 2 2021

1)\(2x+6=0\)

\(\Leftrightarrow2x=-6\)

\(\Leftrightarrow x=-3\)

Vậy : x=3 là nghiệm PT

2)\(\left(x^2-2x+1\right)-4=0\)

\(\Leftrightarrow\left(x-1\right)^2=4\)

\(\Leftrightarrow\hept{\begin{cases}x-1=2\\x-1=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\x=-1\end{cases}}}\)

Vậy:....

3)\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)

\(\Rightarrow\left(x-2\right)^2+3\left(x+2\right)=x^2-11\)

\(\Leftrightarrow x^2-4x+4+3x+6-x^2+11=0\)

\(\Leftrightarrow-x+21=0\)

\(\Leftrightarrow-x=-21\)

\(\Leftrightarrow x=21\)

Vậy:......

4) \(x\left(x^2-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x^2-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x^2=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy:........

5)\(4x+20=0\)

\(\Leftrightarrow4x=-20\)

\(\Leftrightarrow x=-5\)

Vậy:...

6)\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

\(\Rightarrow x\left(x+3\right)+\left(x+1\right)\left(x-2\right)=2x\left(x+1\right)\)

\(\Leftrightarrow x^2+3x+x^2-2x+x-2-2x^2-2x=0\)

\(\Leftrightarrow-2=0\)(vô lí)

Vậy : PT vô nghiệm

7)\(\frac{1+2x-5}{6}=\frac{3-x}{4}\)

\(\Leftrightarrow\frac{-4+2x}{6}=\frac{3-x}{4}\)

\(\Rightarrow2\left(-4+2x\right)=3\left(3-x\right)\)

\(\Leftrightarrow-8+4x-9+3x=0\)

\(\Leftrightarrow-17+7x=0\)

\(\Leftrightarrow7x=17\)

\(\Leftrightarrow x=\frac{17}{7}\)

8) Làm tương tự

9) \(2\left(x+1\right)=5x-7\)

\(\Leftrightarrow2x+2-5x+7=0\)

\(\Leftrightarrow-3x+9=0\)

\(\Leftrightarrow-3x=-9\)

\(\Leftrightarrow x=3\)

#H

1.\(2x+6=0\)

\(\Leftrightarrow2\left(x+3\right)=0\)

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)

2.\(\left(x^2-2x+1\right)-4=0\)

\(\Leftrightarrow\left(x-1\right)^2-4=0\)

\(\Leftrightarrow\left(x-1-2\right)\left(x-1+1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{3;-1\right\}\)

3.\(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)

ĐKXĐ :\(x\ne\pm2\)

Ta có ; \(\frac{x-2}{x+2}+\frac{3}{x-2}=\frac{x^2-11}{x^2-4}\)

\(\Leftrightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{x^2-4x+4+3x+6}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\frac{x^2-x+10}{\left(x-2\right)\left(x+2\right)}=\frac{x^2-11}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow x^2-x+10=x^2-11\)

\(\Leftrightarrow21-x=0\)

\(\Leftrightarrow x=21\)(Thỏa mãn ĐKXĐ)

Vậy tập nghiệm của PT là \(S=\left\{21\right\}\)

4.\(x\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=0\)

hoặc \(x-1=0\)

hoặc \(x+1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{0;\pm1\right\}\)

5.\(4x+20=0\)

\(\Leftrightarrow4\left(x+5\right)=0\)

\(\Leftrightarrow x+5=0\)

\(\Leftrightarrow x=-5\)

Vậy tập nghiệm của PT là \(S=\left\{-5\right\}\)

6.\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

ĐKXĐ : \(x\notin\left\{-1;0\right\}\)

Ta có : \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

\(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)

\(\Leftrightarrow\frac{x^2+3x+x^2-x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)

\(\Leftrightarrow\frac{x^2+2x-2}{x\left(x+1\right)}=\frac{2x^2+2x}{x\left(x+1\right)}\)

\(\Rightarrow2x^2+2x-2=2x^2+2x\)

\(\Leftrightarrow0x=2\)(Vô lí)

Vậy PT vô nghiệm 

7.\(1+\frac{2x-5}{6}=\frac{3-x}{4}\)

\(\Leftrightarrow\frac{12}{12}+\frac{2\left(2x-5\right)}{12}=\frac{3\left(3-x\right)}{12}\)

\(\Leftrightarrow\frac{12+4x-10}{12}=\frac{9-3x}{12}\)

\(\Leftrightarrow\frac{4x+2}{12}=\frac{9-3x}{12}\)

\(\Rightarrow4x+2=9-3x\)

\(\Leftrightarrow7x=7\)

\(\Leftrightarrow x=1\)

Vậy tập nghiệm của PT là \(S=\left\{1\right\}\)

8.\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)

ĐKXĐ : \(x\notin\left\{0;2\right\}\)

Ta có : \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x^2-2x}\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow\frac{x^2+2x-x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow\frac{x^2+x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

\(\Rightarrow x^2+x+2=2\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)(Không thỏa mãn ĐKXĐ)_(Thỏa mãn ĐKXĐ)

Vậy tập nghiệm của PT là \(S=\left\{-1\right\}\)

9.\(2\left(x+1\right)=5x-7\)

\(\Leftrightarrow2x+2=5x-7\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\)

Vậy tập nghiệm của PT là \(S=\left\{3\right\}\)