Ti`m max: \(\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)vo+'i x\(\ge\)0: x\(\ne\)1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(A=\frac{5}{\sqrt{x}-1}\)nguyên thì \(5⋮\sqrt{x}-1\)
\(\Rightarrow\sqrt{x}-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;0;6;-4\right\}\)
\(\Leftrightarrow x\in\left\{4;0;36\right\}\)( thỏa )
Để \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3+4⋮\sqrt{x}-3\)
Vì \(\sqrt{x}-3⋮\sqrt{x}-3\)
\(\Rightarrow4⋮\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;2;5;1;7;-1\right\}\)
\(\Leftrightarrow x\in\left\{16;4;25;1;49\right\}\)
Máy kia tương tự đi ăn cơm đây :>
Mk lm nốt câu C
\(C=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}-1}=1+\frac{3}{\sqrt{x}-1}\)
Để C nguyên\(\Leftrightarrow\sqrt{x}-1\inƯ_{\left(3\right)}=\left\{\pm3;\pm1\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=3\left(tm\right)\\\sqrt{x}-1=-3\left(l\right)\\\sqrt{x}-1=-1\left(tm\right)\\\sqrt{x}-1=1\left(tm\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16\\x=0\\x=4\end{matrix}\right.\)
c,C= \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\left(x\ge1\right)\)
=\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
=\(\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\) (1)
TH1: \(\sqrt{x-1}< 1\) hay \(1\le x< 2\)
Từ (1)=>C= \(\sqrt{x-1}+1+1-\sqrt{x-1}\)=2
TH2: \(\sqrt{x-1}\ge1\) hay \(x\ge2\)
Từ (1) =>C=\(\sqrt{x-1}+1+\sqrt{x-1}-1\)=\(2\sqrt{x-1}\)
d, D=\(\sqrt{13+30\sqrt{2}+\sqrt{9+4\sqrt{2}}}=\sqrt{13+30\sqrt{2}+\sqrt{8+2\sqrt{8}+1}}=\sqrt{13+30\sqrt{2}+\sqrt{\left(\sqrt{8}+1\right)^2}}\)
=\(\sqrt{13+30\sqrt{2}+\sqrt{8}+1}=\sqrt{14+30\sqrt{2}+2\sqrt{2}}\)
=\(\sqrt{14+32\sqrt{2}}\)
a)\(\frac{x-y}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)
b)\(\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)
\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)
\(B=3-\sqrt{x}-\sqrt{x}+3-6\)
\(B=-2\sqrt{x}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3}{\sqrt{x}-6}\)
Sửa đề nha: \(\sqrt{x^3-1}\) thành \(\sqrt{x^3}-1\)
\(B=\left(\frac{2x+1-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(B=\left(\frac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(x-2\sqrt{x}+1\right)\)
\(B=\frac{\left(x+\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
b/ Để B= 3\(\Leftrightarrow\sqrt{x}-1=3\Leftrightarrow x=16\)
Xét
\(1-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}=\frac{x}{x+\sqrt{x}+1}\ge0\)