K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

a) n(n + 5) - (n - 3)(n + 2) = n2 + 5n - n2 - 2n + 3n + 6 = 6n + 6 = 6(n + 1) \(⋮\)\(\forall\)\(\in\)Z

b) (n2 + 3n - 1)(n + 2) - n3  + 2 = n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2 = 5n2 + 5n = 5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

c) (6n + 1)(n + 5) - (3n + 5)(2n - 1) = 6n2 + 30n + n + 5 - 6n2 + 3n - 10n + 5 = 24n + 10 = 2(12n + 5) \(⋮\)\(\forall\)\(\in\)Z

d) (2n - 1)(2n + 1) - (4n - 3)(n - 2) - 4 = 4n2 - 1 - 4n2 + 8n + 3n - 6 - 4 = 11n - 11 = 11(n - 1) \(⋮\)11 \(\forall\)\(\in\)Z

30 tháng 6 2017

Trần Thị Thùy Dung tham khảo đây nha:

Câu hỏi của Cute Baby so good - Toán lớp 6 - Học toán với OnlineMath

............

s5.jpg
Trần Thị Thùy Dung
30 tháng 4 2020

Ta có công thức quen thuộc: \(B=1+2+3+....+n=\frac{n\left(n+1\right)}{2}\)

Lại có: \(2A=\left(n^5+1\right)+\left[\left(n-1\right)^5+2^5\right]+\left[\left(n-2\right)^5+3^5\right]+....+\left(1+n^5\right)\)

Nhận thấy mỗi số hạng đều chia hết cho n+1 nên \(2A⋮n+1\left(1\right)\)

Lại có 2A-2n5=\(\left[\left(n-1\right)^5+1^5\right]+\left[\left(n-2\right)^2+2^5\right]+....\)chia hết cho n

Do 2n5 nên 2A chia hết cho n (2)

Từ (1) (2) => 2A chia hết cho n(n+1) do đó: 2A chia hết cho 2B => A chia hết cho B (đpcm)

6 tháng 11 2015

tick cho mình đi đã rồi mình bày cho nếu khôn thì đừng mơ nhé