cho x,y>0 tìm giá trị nhỏ nhất của x/y +y/x +xy/x^2-xy+y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x+y\ge2\sqrt{xy}\) \(\Rightarrow xy+2\sqrt{xy}\le8\) hay \(\left(\sqrt{xy}+1\right)^2\le9\)
\(\Rightarrow\sqrt{xy}+1\le3\Rightarrow xy\le4\)
Ta có : \(\left(9-xy\right)^2=\left(x+y+1\right)^2=x^2+y^2+1+2\left(x+y+xy\right)=x^2+y^2+17\)
Vì \(xy\le4\Rightarrow9-xy\ge5\Rightarrow\left(9-xy\right)^2\ge25\Leftrightarrow x^2+y^2+17\ge25\)
\(\Rightarrow A\ge8\) . Dấu "=" xảy ra khi x = y = 2
Vậy Min A = 8 tại x = y = 2
Ta có:
\(x^2+y^2=\)
\(=\frac{1}{3}\left(x^2+4+y^2+4\right)+\frac{2}{3}\left(x^2+y^2\right)-\frac{8}{3}\)
\(\ge\frac{4}{3}\left(x+y+xy\right)-\frac{8}{3}=8\)
\(\Rightarrow P\ge8\)
Dấu = khi \(x=y=2\)
Vậy MinP=8 khi x=y=2
Áp dụng bđt Cô-si \(1=x^2+y^2\ge2xy\)
\(\Rightarrow xy\le\frac{1}{2}\)
Ta có \(A=\frac{-2xy}{1+xy}\ge\frac{-\frac{2.1}{2}}{1+\frac{1}{2}}=-\frac{2}{3}\)
\("="\Leftrightarrow x=y=\frac{1}{\sqrt{2}}\)
\(M=\frac{x^2+9y^2}{xy}-\frac{8y^2}{xy}\)
\(\ge\frac{2\sqrt{9x^2y^2}}{xy}-\frac{8.y.y}{xy}\)
\(\ge6-\frac{8.\frac{x}{3}.y}{xy}=6-\frac{8}{3}=\frac{10}{3}\)
Đẳng thức xảy ra khi x = 3y.
Vậy..
\(x\ge3y\Leftrightarrow\frac{x}{y}\ge3\)
\(M=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}\)
\(\text{Đặt}\frac{x}{y}=a\Rightarrow a\ge3,M=a+\frac{1}{a}\)
Dùng điểm rơi a=3
\(M=\frac{8}{9}a+\frac{1}{9}a+\frac{1}{a}\ge\frac{8}{9}a+\frac{2}{3}\ge\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
Bằng bước biến đổi \(P=\frac{\left(x+y\right)^2+xy}{\sqrt{xy}.\left(x+y\right)}\)ta có cách giải sau
Áp dụng Bất đẳng thức AM-GM,ta có: \(P=\frac{\left(x+y\right)^2+xy}{\sqrt{xy}.\left(x+y\right)}\ge\frac{2\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(x+y\right)}=2\)
Vậy giá trị nhỏ nhất của P là 2 đạt được khi \(\left(x+y\right)^2=xy\Leftrightarrow x^2+xy+y^2=0\)
Cơ mà nếu vậy thì P không có giá trị nhỏ nhất à, hay là em làm sai
Đổi tên biểu thức thành M cho nó đỡ nhầm lẫn với cách phần đặt biến phụ nha!
Biểu thức đối xứng 2 biến x, y là em nghĩ đến cách đặt \(S=x+y;P=xy\Rightarrow S^2\ge4P\).(đẳng thức xảy ra khi x = y)
Có: \(M=\frac{S^2+P}{S\sqrt{P}}=\frac{S}{\sqrt{P}}+\frac{\sqrt{P}}{S}\). Đặt \(t=\frac{S}{\sqrt{P}}=\sqrt{\frac{S^2}{P}}\ge\sqrt{\frac{4P}{P}}=2\). Quy về tìm min biểu thức:
\(M=t+\frac{1}{t}\left(t\ge2\right)\). Đến đây có 2 cách:
+) Cách 1: \(t+\frac{1}{t}=\frac{t}{4}+\frac{1}{t}+\frac{3t}{4}\ge2\sqrt{\frac{t}{4}.\frac{1}{t}}+\frac{3.2}{4}=\frac{5}{2}\)
Đẳng thức xảy ra khi ... (anh tự giải nhá:3)
+) Cách 2: \(t+\frac{1}{t}=t+\frac{4}{t}-\frac{3}{t}\ge2\sqrt{t.\frac{4}{t}}-\frac{3}{2}=\frac{5}{2}\)
Vậy...
Đáp án:
x=-2
y=1
#Châu's ngốc