K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2020

\(N=\frac{4x+1}{4x^2+2}\)

<=> \(4x^2N+2N-4x-1=0\)

<=> \(4Nx^2-4x+2N-1=0\)(1)

+) Với N = 0 => x = -1/4

+) Với N khác 0

(1) có: \(\Delta\)\(2^2-4N\left(2N-1\right)=-8N^2+4N+4\)

Để có min N thì (1) có nghiệm <=> \(\Delta\ge0\)

<=> \(-8N^2+4N+4\ge0\)

<=> \(-\frac{1}{2}\le N\le1\)

Do đó giá trị nhỏ nhất của N = -1/2 

Khi đó: \(-\frac{1}{2}=\frac{4x+1}{4x^2+2}\)

<=> \(-2x^2-1=4x+1\)

<=> \(x^2+2x+1=0\)

<=> x = -1 thử lại thỏa mãn

Vậy gtnn của N = -1/2 đạt tại x = -1.

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

17 tháng 11 2016

ĐKXĐ: x#0

Ta có: \(T=8x^2-4x+\frac{1}{4x^2}+15\)

<=> \(T=\left(4x^2+\frac{1}{4x^2}\right)+\left(4x^2-4x+1\right)+14\)

Áp dụng BĐT \(a+\frac{1}{a}\ge2\)cho số a thuộc N*,ta có:

\(T\ge2+\left(2x-1\right)^2+14\)

=> Min T=16 khi và chỉ khi \(x=\frac{1}{2}\)

17 tháng 11 2016

\(8x^2-4x+\frac{1}{4x^2}+15\)

\(=\left(4x^2-4x+1\right)+\left(4x^2-2+\frac{1}{4x^2}\right)+15-1+2\)

\(=4\left(x-\frac{1}{2}\right)^2+\left(2x-\frac{1}{2x}\right)^2+16\ge16\)

Vậy GTNN là 16 đạt được khi x = \(\frac{1}{2}\)

17 tháng 4 2020

N=4x2-4x+1-3|2x-1|+2

  =(2x-1)2-3|2x-1|+2 > hoặc = 2

dấu = xảy ra khi x=1/2

học tốt!!!!!!!!!!!

18 tháng 3 2018

Ta có:\(A=x^2-4x+\frac{1}{x^2-4x+4}+5\)\(=x^2-4x+4+\frac{1}{x^2-4x+4}+1\)

Áp dụng BĐT Cauchy ta có:\(A\ge2\sqrt{\left(x^2-4x+4\right).\frac{1}{x^2-4x+4}}+1=2+1=3\)

\(\Rightarrow GTNN\) của A là 3 đạt được khi \(x^2-4x+4=\frac{1}{x^2-4x+4}\Rightarrow\left(x-2\right)^4=1\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

18 tháng 3 2018

cảm ơn bạn

17 tháng 12 2023

Bài 1:

a: \(M=x^2-10x+3\)

\(=x^2-10x+25-22\)

\(=\left(x^2-10x+25\right)-22\)

\(=\left(x-5\right)^2-22>=-22\forall x\)

Dấu '=' xảy ra khi x-5=0

=>x=5

b: \(N=x^2-x+2\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi x-1/2=0

=>x=1/2

c: \(P=3x^2-12x\)

\(=3\left(x^2-4x\right)\)

\(=3\left(x^2-4x+4-4\right)\)

\(=3\left(x-2\right)^2-12>=-12\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

5 tháng 3 2018

\(D=\frac{4x+2}{x+1}=\frac{4x+4-2}{x+1}=\frac{4\left(x+1\right)-2}{x+1}=4+\frac{-2}{x+1}\)

Để D có GTLN \(\Leftrightarrow\frac{-2}{x+1}\)có GTNN

                       \(\Leftrightarrow x+1\)có GTLN, x+1<0 và x\(x\inℤ\)

                         \(\Leftrightarrow x+1=-1\)

                                 \(x=-2\)

                  vậy, D có GTLN là 6 khi x=-2

Để D có GTNN \(\Leftrightarrow\frac{-2}{x+1}\)có GTLN

                       \(\Leftrightarrow x+1\)có GTNN, x+1>0 và x\(x\inℤ\)

                         \(\Leftrightarrow x+1=1\)

                                 \(x=0\)

                  vậy, D có GTNN là 2 khi x=0

5 tháng 7 2020

vừa với giải xong giờ lại giải lại :v

\(M=4x^2-3x+\frac{1}{4x}+2011\)

\(=\left(2x-1\right)^2+x+\frac{1}{4x}+2010\)

Theo bđt Cauchy : \(x+\frac{1}{4x}\ge2\sqrt[2]{\frac{1}{4}}=1\)

Suy ra : \(M\ge1+2010=2011\)

Vậy \(Min_M=2011\)khi \(x=\frac{1}{2}\)

3 tháng 7 2020

Bài làm:

+Tìm Min:

Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(x^2+4x+4\right)-\left(x^2+1\right)}{x^2+1}=\frac{\left(x+2\right)^2}{x^2+1}-1\)

Mà \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\)\(\Rightarrow\frac{\left(x+2\right)^2}{x^2+1}\ge0\)

Dấu "=" xảy ra khi: \(\left(x+2\right)^2=0\Rightarrow x=-2\)

Vậy \(Min=-1\Leftrightarrow x=-2\)

+Tìm Max:

Ta có: \(\frac{4x+3}{x^2+1}=\frac{\left(4x^2+4\right)-\left(4x^2-4x+1\right)}{x^2+1}=4-\frac{\left(2x-1\right)^2}{x^2+1}\)

Mà \(\hept{\begin{cases}\left(2x-1\right)^2\ge0\\x^2+1>0\end{cases}}\left(\forall x\right)\)\(\Rightarrow-\frac{\left(2x-1\right)^2}{x^2+1}\le0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x-1\right)^2=0\Rightarrow x=\frac{1}{2}\)

Vậy \(Max=4\Leftrightarrow x=\frac{1}{2}\)

3 tháng 7 2020

1 cách làm khác :3

\(A=\frac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\)

\(\Leftrightarrow Ax^2-4x+\left(A-3\right)=0\)

Xét \(\Delta'=4-\left(A-3\right)A=-A^2+3A+4\ge0\)

\(\Leftrightarrow\left(A-4\right)\left(A+1\right)\ge0\Leftrightarrow-1\le A\le4\)

Điểm rơi khó chết luôn á :(