K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(x\left(x^3-4\right)+2x^3-4\)

\(=x^4-4x+2x^3-4\)

\(=\left(x^2-2\right)\left(x^2+2\right)-2x\left(x^2+2\right)\)

\(=\left(x^2+2\right)\left(x^2-2x-2\right)\)

b: \(\left(1+2x\right)\left(1-2x\right)-x\left(x+2\right)\left(x-2\right)\)

\(=1-4x^2-x\left(x^2-4\right)\)

\(=1-4x^2-x^3+4x\)

\(=-\left(x^3-1+4x^2-4x\right)\)

\(=-\left[\left(x-1\right)\left(x^2+x+1\right)+4x\left(x-1\right)\right]\)

\(=-\left(x-1\right)\left(x^2+5x+1\right)\)

4 tháng 8 2023

\(a.x^3-2x^2-2x-4\\ =\left(x^3-2x^2\right)-\left(2x-4\right)\\ =x^2\left(x-2\right)-2\left(x-2\right)\\ =\left(x^2-2\right)\left(x-2\right)\)

\(b.xy+1-x-y\\ =\left(xy-x\right)+\left(-y+1\right)\\ =x\left(y-1\right)-\left(y-1\right)\\ =\left(x-1\right)\left(y-1\right)\)

\(c.x^2-4xy+4y^2-4y\\ =\left(x-2y\right)^2-4y\\ =\left(x-2y\right)^2-\left(2y\right)^2\\ =\left(x-2y+2y\right)\left(x-2y-2y\right)\\ =x\left(x-4y\right)\)

\(d.16-x^2+2xy-y^2\\ =4^2-\left(x-y\right)^2\\ =\left(4-x+y\right)\left(4-x-y\right)\)

 

 

 

b: =xy-x-y+1

=x(y-1)-(y-1)

=(x-1)(y-1)

c: =(x-2y)^2-4y

\(=\left(x-2y-2\sqrt{y}\right)\left(x-2y+2\sqrt{y}\right)\)

d: =16-(x^2-2xy+y^2)

=16-(x-y)^2

=(4-x+y)(4+x-y)

1A:

a: \(x^3+2x=x\left(x^2+2\right)\)

b: \(3x-6y=3\left(x-2y\right)\)

c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)

\(=5\left(x+3y\right)\left(1-3x\right)\)

d: \(3\left(x-y\right)-5x\left(y-x\right)\)

\(=3\left(x-y\right)+5x\left(x-y\right)\)

\(=\left(x-y\right)\left(5x+3\right)\)

7 tháng 10 2021

1A. a. x(x2+2) 

b. 3(x-2y)

c. 5(x+3y)(1-3x) 

d. (x-y) (3-5x)

1B. a. 2x(2x-3)

b.xy(x2-2xy+5)

c. 2x(x+1)(x+2)

d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)

 

a: \(=x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-1\right)\)

b: \(=25-\left(x-2y\right)^2\)

\(=\left(5-x+2y\right)\left(5+x-2y\right)\)

19 tháng 8 2021

a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\left(1\right)=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-15=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)

Đặt \(t=x^2+5x+4\)

(1) trở thành: \(t\left(t+2\right)-15=t^2+2t+1-16=\left(t+1\right)^2-4^2=\left(t-3\right)\left(t+5\right)\)

Thay t: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15=\left(x^2+5x+4-3\right)\left(x^2+5x+4+5\right)=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)

b) \(\left(2x+5\right)^2-\left(x-9\right)^2=\left(2x+5-x+9\right)\left(2x+5+x-9\right)=\left(x+14\right)\left(3x-4\right)\)

a: Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24-15\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+9\)

\(=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)

b: \(\left(2x+5\right)^2-\left(x-9\right)^2\)

\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)

\(=\left(x+15\right)\left(3x-4\right)\)

13 tháng 11 2021

a) \(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)

b) \(=\left(x^2+2x\right)+\left(10x+20\right)=x\left(x+2\right)+10\left(x+2\right)=\left(x+2\right)\left(x+10\right)\)

c) đặt \(x^2+x+1=t\)

\(\left(x^2+x+1\right)\left(x^2+x+4\right)+2=t\left(t+3\right)+2=t^2+3t+2=\left(t^2+t\right)+\left(2t+2\right)=t\left(t+1\right)+2\left(t+1\right)=\left(t+1\right)\left(t+2\right)=\left(x^2+x+2\right)\left(x^2+x+3\right)\)

28 tháng 9 2021

\(a,=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\\ b,=\left(x-\sqrt{3}y\right)\left(x+\sqrt{3}y\right)\\ c,=\left[3x-2y-2\left(x+y\right)\right]\left[3x-2y+2\left(x+y\right)\right]\\ =5x\left(x-4y\right)\\ d,=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\\ =\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\\ =\left(x-5y\right)\left(5x-y\right)\\ f,=\left(x+3\right)\left(x^2-3x+9\right)\\ g,=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\\ h,=\left(5x-1\right)\left(25x^2+5x+1\right)\)

28 tháng 9 2021

\(a)x^4-y^4=(x^2-y^2)(x^2+y^2)=(x-y)(x+y)(x^2+y^2)\\ b)x^2-3y^2=\\ c)(3x-2y)^2-4(x+y)^2=(3x-2y)^2-[2(x+y)]^2\\=(3x-2y+2x+2y)(3x-2y-2x-2y)=5x(x-4y)\\ d)9(x-y)^2-4(x+y)^2=[3(x-y)]^2-[2(x+y)]^2=(3x-3y+2x+2y)(3x-3y-2x-2y)\\=(5x-y)(x-5y)\\ f)x^3+27=(x+3)(x^2-3x+9)\\ g)27x^3-0,001=(3x-0,1)(9x+0,3x+0,01)\\ h)125x^3-1=(5x-1)(25x^2+5x+1)\)

10 tháng 10 2021

a) \(xy^2-25x=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\)

b) \(x\left(x-y\right)+2x-2y=x\left(x-y\right)+\left(2x-2y\right)=x\left(x-y\right)+2\left(x-y\right)=\left(x-y\right)\left(x+2\right)\)

c) \(x^3-3x^2-4x+12=\left(x^3-3x^2\right)-\left(4x-12\right)=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x^2-4\right)=\left(x-2\right)\left(x-3\right)\left(x+2\right)\)

10 tháng 10 2021

\(a,=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\\ b,=x\left(x-y\right)+2\left(x-y\right)=\left(x+2\right)\left(x-y\right)\\ c,=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)

27 tháng 9 2023

a) \(x^4-y^4\)

\(=\left(x^2\right)^2-\left(y^2\right)^2\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)

b) \(x^2-3y^2\)

\(=x^2-\left(y\sqrt{3}\right)^2\)

\(=\left(x-y\sqrt{3}\right)\left(x+y\sqrt{3}\right)\)

c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)

\(=\left(3x-2y+2x-3y\right)\left(3x-2y-3x+2y\right)\)

\(=0\cdot0\)

\(=0\)

d) \(9\left(x-y\right)^2-4\left(x+y\right)^2\)

\(=\left(3x-3y\right)^2-\left(2x+2y\right)^2\)

\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\)

\(=\left(x-5y\right)\left(5x-y\right)\)

e) \(\left(4x^2-4x+1\right)-\left(x+1\right)^2\)

\(=\left(2x-1\right)^2-\left(x+1\right)^2\)

\(=\left(2x-1+x+1\right)\left(2x-1-x-1\right)\)

\(=3x\left(x-2\right)\)

f) \(x^3+27\)

\(=x^3+3^3\)

\(=\left(x+3\right)\left(x^2-3x+9\right)\)

g) \(27x^3-0,001\)

\(=\left(3x\right)^3-\left(0,1\right)^3\)

\(=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\)

h) \(125x^3-1\)

\(=\left(5x\right)^3-1^3\)

\(=\left(5x-1\right)\left(25x^2+5x+1\right)\)

27 tháng 9 2023

c) \(\left(3x-2y\right)^2-\left(2x-3y\right)^2\)

\(=\left(3x-2y+2x-3y\right)\left(3x-2y-2x+3y\right)\)

\(=\left(5x-5y\right)\left(x+y\right)\)

\(=5\left(x+y\right)\left(x-y\right)\)

Câu 1: Phân tích đa thức thành nhân tử:a). 5xy2 + 10x2y.            b). x2 - 9 - 2xy - y2.          c). x3 - 8 + 2x(x - 2).Câu 2: Tìm x, biết:a). (x - 1)(x + 1) - x(x + 3) + 7 = 0.         b). 2x3 - 22x2 + 36x = 0.Câu 3: Cho biểu thức A =  + \(\dfrac{1}{x+2}\) - \(\dfrac{1}{x-2}\) (x ≠ 2; x ≠ -2).a). Rút gọn biểu thức A.b). Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.Câu 4:1). Sân bóng tại...
Đọc tiếp

Câu 1: Phân tích đa thức thành nhân tử:

a). 5xy2 + 10x2y.            b). x2 - 9 - 2xy - y2.          c). x3 - 8 + 2x(x - 2).

Câu 2: Tìm x, biết:

a). (x - 1)(x + 1) - x(x + 3) + 7 = 0.         b). 2x3 - 22x2 + 36x = 0.

Câu 3: Cho biểu thức A =  + \(\dfrac{1}{x+2}\) - \(\dfrac{1}{x-2}\) (x ≠ 2; x ≠ -2).

a). Rút gọn biểu thức A.

b). Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.

Câu 4:

1). Sân bóng tại Trung tâm thể thao quận Tây Hồ là 1 hình chữ nhật có chiều dài 105m, chiều rộng 68m. Ban quản lý muốn thay cỏ mới cho sân. Tính số tiền ban quản lý phải trả để mua cỏ ? biết mỗi mét vuông cỏ có giá 120 000 đồng.

2). Cho ΔABC vuông tại A (AB < AC), đương cao AH. Gọi M là trung điểm của BC, D là điểm đối xứng với A qua M.

a). Chứng minh tứ giác ABDC là hình chữ nhật.

b). Trên tia đối của tia HA lấy điểm E sao cho HA = HE. Chứng minh DB là phân giác góc ADE.

c). Gọi I, K lần lượt là hình chiếu của E lên BD và CD. Chứng minh 3 điểm H, I, K thẳng hàng.

 

 

1
13 tháng 12 2023

Câu 2:

a: \(\left(x-1\right)\left(x+1\right)-x\left(x+3\right)+7=0\)

=>\(x^2-1-x^2-3x+7=0\)

=>-3x+6=0

=>-3x=-6

=>\(x=\dfrac{-6}{-3}=2\)

b: \(2x^3-22x^2+36x=0\)

=>\(2x\left(x^2-11x+18\right)=0\)

=>\(x\left(x^2-11x+18\right)=0\)

=>\(x\left(x^2-2x-9x+18\right)=0\)

=>\(x\left[x\left(x-2\right)-9\left(x-2\right)\right]=0\)

=>\(x\left(x-2\right)\left(x-9\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x-2=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=9\end{matrix}\right.\)

Câu 4:

1: Diện tích cỏ cần thay là:

\(105\cdot68=7140\left(m^2\right)\)

Số tiền BQL sân cần trả là:

\(7140\cdot120000=856800000\left(đồng\right)\)

2:

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

b: Xét ΔADE có

H,M lần lượt là trung điểm của AE,AD

=>HM là đường trung bình của ΔADE
=>HM//DE

=>BC//DE

=>\(\widehat{EDB}=\widehat{DBM}\)(hai góc so le trong)(1)

Ta có: ABDC là hình chữ nhật

=>AD=BC

mà \(MD=\dfrac{AD}{2};MB=\dfrac{BC}{2}\)

nên MD=MB

=>ΔMBD cân tại M

=>\(\widehat{MDB}=\widehat{MBD}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MDB}=\widehat{EDB}\)

=>\(\widehat{ADB}=\widehat{EDB}\)

=>DB là phân giác của góc ADE