Cho a,b>0. tìm GTNN của:
\(S=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=ab+\frac{1}{ab}=16ab+\frac{1}{ab}-15ab\ge8-15ab\) (1)
\(\sqrt{ab}\le\frac{a+b}{2}\le\frac{1}{2}\Leftrightarrow ab\le\frac{1}{4}\Leftrightarrow-15ab\ge-\frac{15}{4}\Leftrightarrow8-15ab\ge8-\frac{15}{4}=\frac{17}{4}\)
VẬy GTNN của S 17/4 tại a = b = 1/2
\(\text{Giải}\)
\(P=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)
Ấp dụng BĐT Cô-si ta có:
\(a+b\ge2\sqrt{ab}\)
\(P=\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}+\frac{a+b}{\sqrt{ab}}.\frac{3}{4}\)
\(\text{ÁP DỤNG BĐT Cô-si Ta đc:}\)\(\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\ge2\sqrt{\frac{\left(a+b\right)\left(\sqrt{ab}\right)}{4\sqrt{ab}\left(a+b\right)}}=1\)
Theo BĐT Cô si ta đc:\(\frac{3}{4}.\frac{a+b}{\sqrt{ab}}\ge\frac{3}{4}.2=\frac{3}{2}\)
\(\Rightarrow P_{min}=\frac{3}{2}.\text{Dấu "=" xảy ra khi: a=b}\)
Ta có :
\(\frac{a^2}{a+b}=\frac{a\left(a+b\right)-ab}{a+b}=a-\frac{ab}{a+b}\text{≥}a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)(1)
Tương tự : \(\hept{\begin{cases}\frac{b^2}{b+c}\text{≥}b-\frac{\sqrt{bc}}{2}\left(2\right)\\\frac{c^2}{c+a}\text{≥}c-\frac{\sqrt{ac}}{2}\left(3\right)\end{cases}}\)
Cộng vế với vế của (1);(2)(;(3) lại ta được :
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\text{≥}a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ac}}{2}\)
\(\Leftrightarrow A\text{≥}\left(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ab}\right)+\left(\frac{\sqrt{ab}}{2}+\frac{\sqrt{bc}}{2}+\frac{\sqrt{ac}}{2}\right)\)
Lại lại có : \(a+b+c\text{≥}\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) (tự chứng minh)
\(\Rightarrow a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ab}\text{≥}0\)
Nên \(A\text{≥}\frac{1}{2}\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)=\frac{1}{2}\)có GTNN là 1/2
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Sửa đề: GTLN
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{a+\sqrt{2019a+bc}}=\frac{a}{a+\sqrt{a\left(a+b+c\right)+bc}}=\frac{a}{a+\sqrt{a^2+ab+ca+bc}}\)
\(=\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{a}{a+\sqrt{\left(\sqrt{ab}+\sqrt{ac}\right)^2}}\)
\(=\frac{a}{a+\sqrt{ab}+\sqrt{ac}}=\frac{\sqrt{a}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b}{b+\sqrt{2019b+ac}}\le\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}+\sqrt{c}};\frac{c}{c+\sqrt{2019c+ab}}\le\frac{\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}\)
Cộng theo vế 3 BĐT trên ta có:
\(P\le\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=1\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Cho các số thực a,b,c,x,y thỏa mãn ax−by=√3.
Tìm GTNN của F=a2+b2+x2+y2+bx+ay
Lời giải:
Sử dụng giả thiết ax−by=√3 ta có:
(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3
Áp dụng bất đẳng thức Cauchy , suy ra:
a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3
Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x trong đó x=ax+by
Ta có:
(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9
⇒2√x2+3+x≥3
Vậy MinT=3
Min S = 2,5 khi a=b=1