Cho b2=ac.Chứng minh rằng a2+b2/b2+c2=a/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có :b2=ac
Thay vào ta có: \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
\(\Leftrightarrow\frac{a^2+ac}{ac+c^2}=\frac{a}{c}\Leftrightarrow\frac{a\left(a+c\right)}{c\left(a+c\right)}=\frac{a}{c}\Leftrightarrow\frac{a}{c}=\frac{a}{c}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Ta có: a + b - 2c = 0
⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:
(2c − b)2 + b2 + (2c − b).b − 3c2 = 0
⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0
⇔ b2 − 2bc + c2 = 0
⇔ (b − c)2 = 0
⇔ b − c = 0
⇔ b = c
⇒ a + c − 2c = 0
⇔ a − c = 0
⇔ a = c
⇒ a = b = c
Vậy a = b = c
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của nguyen thanh chuc - Toán lớp 7 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{a+d}\ge\frac{a-d}{a+b}\)
\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{a+d}-\frac{a-d}{a+b}\ge0\)
\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{a+d}+\frac{d-a}{a+b}\ge0\)
\(\Leftrightarrow\left(\frac{a-b}{b+c}+1\right)+\left(\frac{b-c}{c+d}+1\right)+\left(\frac{c-d}{a+d}+1\right)+\left(\frac{d-a}{a+b}+1\right)\ge4\)
\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{a+d}+\frac{d+b}{a+b}\ge4\)
\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(1)
Áp dụng BĐT AM-GM ta có:
\(\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{a+d}+\frac{d+b}{a+b}\ge\)\(\left(a+c\right)\frac{2}{\sqrt{\left(b+c\right)\left(a+d\right)}}+\left(b+d\right)\frac{2}{\sqrt{\left(c+d\right)\left(a+b\right)}}\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4 \left(2\right)\)Từ (1) và (2) \(\Rightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{a+d}\ge\frac{a-d}{a+b}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{1}{b+c}=\frac{1}{a+d}\\\frac{1}{c+d}=\frac{1}{a+b}\end{cases}}\Leftrightarrow\hept{\begin{cases}b+c=a+d\\c+d=a+b\end{cases}}\Leftrightarrow a=b=c=d\)
vì sao
(a+c)(2/căn bậc 2 của(b+c)(a+d))+(b+d)(2/căn bậc 2 của (c+d)(a+b))
>=(4(a+c)/a+b+c+d) +4(b+d)/a+b+c+d
(căn bậc 2 máy mink ko viết đc)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: a+b+c=0
=>a+b=0-c
a+c=0-b
b+a=0-c
b+c=0-a
c+a=0-b
c+b=0-a
Lại có:
M=a(a+b)(a+c)=a(0-c)(0-b)=0.a.(0-b)-c.a.(0-b)=0-0.c.a+a.b.c=0-0+abc=abc
N=b(b+c)(b+a)=b(0-a)(0-c)=0.b.(0-c)-a.b.(0-c)=0-0.a.b+a.b.c=0-0+abc=abc
P=c(c+a)(c+b)=c(0-b)(0-a)=0.c.(0-a)-b.c.(0-a)=0-0.b.c+a.b.c=0-0+abc=abc
=> M=N=P=abc
Vậy M=N=P