Tính hợp lý:
2/3.5 + 2/5.7 + 2/7.9 + 2/9.10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.100}\)
\(B=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99.100}+\dfrac{1}{99.100}\)
\(B=\dfrac{1}{3}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(B=\dfrac{1}{3}-\dfrac{2}{100}+\dfrac{1}{99}\)
\(B=\dfrac{1}{3}-\dfrac{1}{50}+\dfrac{1}{99}\)
Đến đây thì hết tính hợp lý được rồi:v
\(B=\dfrac{34}{99}-\dfrac{1}{50}\)
\(B=\dfrac{1601}{4950}\)
\(-\frac{2}{1.3}-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-\frac{2}{9.11}-\frac{2}{11.13}-\frac{2}{13.15}\)
\(=\left(-\frac{2}{1.3}\right)+\left(-\frac{2}{3.5}\right)+\left(-\frac{2}{5.7}\right)+\left(-\frac{2}{7.9}\right)+\left(-\frac{2}{9.11}\right)+\left(-\frac{2}{11.13}\right)+\left(-\frac{2}{13.15}\right)\)
\(=\left(-2\right).\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\right)\)
\(=\left(-2\right).\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\left(-2\right).\left(1-\frac{1}{15}\right)=\left(-2\right).\frac{14}{15}\)
\(=-\frac{28}{15}\)
1)
2/3.5+2/5.7+...+2/11.13+2/13.15+2/1.2+2/2.3+...+2/9.10
=(2/3.5+...2/13.15)+(2/1.2+...+2/9.10)
= (2/3-2/15)+ [2(1-1/10)]
=8/15+9/5
=7/3
2)
11/12+11/12.24+...+11/88.99
=11-1/9
=10/8/9
Ta có: \(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}\)
\(\Rightarrow2A=\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{13.15}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\)
\(\Rightarrow2A=\frac{1}{3}-\frac{1}{15}=\frac{4}{15}\)
\(\Rightarrow A=\frac{4}{15}:2=\frac{2}{15}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{13.15}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{13.15}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{15}\)
\(2A=\frac{1}{3}-\frac{1}{15}=\frac{4}{15}\)
\(\Rightarrow A=\frac{4}{15}:2=\frac{2}{15}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{13.15}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+............+\frac{1}{13}-\frac{1}{15}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{4}{15}\)
\(\Rightarrow A=\frac{2}{15}\)
a.
\(M=1.\left[\frac{1}{3}-\frac{1}{5}+.....\frac{1}{97}-\frac{1}{99}\right]\)
\(M=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
b.
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{197}-\frac{1}{199}\right]\)
\(N=\frac{3}{2}.\left[\frac{1}{5}-\frac{1}{199}\right]=\frac{291}{995}\)
mk đầu tiên nha bạn
Đặt A=\(\dfrac{2}{3.5}.\dfrac{2}{7.9}.....\dfrac{2}{99.101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)
Ta có: \(P=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{1}{15}\)
\(=\dfrac{4}{15}\)
\(S=\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+\dfrac{2}{9\times11}\)
\(=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\)
\(=\dfrac{1}{1}-\dfrac{1}{11}=\dfrac{11}{11}-\dfrac{1}{11}=\dfrac{10}{11}\)
2/9.10 là 2/9.10,ko cần sửa lại đâu đề cô mk giao đó
Sửa đề: \(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\)
Ta có: \(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(=\frac{1}{3}-\frac{1}{11}\)
\(=\frac{11}{33}-\frac{3}{33}=\frac{8}{33}\)