tìm số nguyên x biết:
\(\frac{x-1}{-6}\)= \(\frac{6}{1-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1/3+1/6+1/10+....+1/x(x+1)=2004/2005
=>2/6+2/12+2/20+....+2/2x(x+1)=2004/2005
=>2[1/6+1/12+1/20+.......+1/2x(x+1)]=2004/2005
=> 2[1/2.3+1/3.4+1/4.5+.....+1/2x(x+1)] = 2004/2005
=>2[1/2 - 1/3+1/3 -1/4+1/4 - 1/5 +.....+1/2x - 1/(2x+2)] = 2004/2005
=>2[1/2 - 1/(2x+2)] = 2004/2005
=>x/(x+1) = 2004/2005 => x=2004
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{2003}.\frac{1}{2}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)
\(x+1=2003\)
\(x=2002\)
a)\(\left(\frac{1}{2}-\frac{1}{3}\right).6^x+6^{x+2}=6^{15}+6^{18}\)
\(\frac{1}{6}.6^x+6^{x+2}=6^{15}\left(1+6^3\right)\)
\(\frac{1}{6}.6^x\left(1+6^3\right)=6^{15}.217\)
\(6^{x-1}.217=6^{15}.217\)
\(6^{x-1}=6^{15}\)
\(x-1=15\)
\(x=16\)
b) \(\left(\frac{1}{2}-\frac{1}{6}\right).3^{x+4}-4.3^x=3^{16}-4.3^{13}\)
\(\frac{1}{3}.3^x.4\left(3^4-1\right)=3^{13}.4\left(3^3-1\right)\)
\(3^x.4.\left(3^3-1\right)=3^{13}.4.\left(3^3-1\right)\)
\(3^x=3^{13}\)
\(x=13\)
\(\left(\frac{1}{2}-\frac{1}{6}\right).\left(3^x.3^4\right)-4.3^x=3^{16}-4.3^{13}\)
=> \(\frac{1}{3}.3^x.3^4-4.3^x=3^{16}-4.3^{13}\)
=> \(3^x.3^4-4.3^x=\left(3^{16}-4.3^{13}\right):\frac{1}{3}\)
=> \(3^x.3^4-4.3^x=-386339074,3\)
=> \(3^x.\left(3^4-4\right)=-386339074,3\)
=> \(3^x.77=-386339074,3\)
=> \(3^x=-386339074,3:77\)
=> \(3^x=-5017390,575\)
=> x = ... chắc tự ngồi tính đc
Sửa đề :\(\left|\frac{9}{4}-x\right|=\frac{1}{6}\)
\(\Rightarrow\frac{9}{4}-x=\orbr{\begin{cases}\frac{1}{6}\\-\frac{1}{6}\end{cases}}\)
\(\Rightarrow x=\orbr{\begin{cases}\frac{4}{3}\\\frac{29}{12}\end{cases}}\)
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
Sai đề bạn nhé, 2 ẩn mà chỉ có 1 hệ phương trình thì không giải được đâu
a, 4/x- y/3= 1/6
=> 4/x= 1/6+y/3
=> 4/x=( 2y+1)/6
=> 4.6= (2y+1)x
=> 24= 2xy+x (r chịu xem lại đề nhé)
\(\frac{x-1}{-6}=\frac{6}{1-x}\)
=> \(\hept{\begin{cases}x-1=6\\-6=1-x\end{cases}}\)
=> \(\hept{\begin{cases}x=7\\x=7\end{cases}\left(tmđb\right)}\)
Vậy x = 7
sai rồi