Cho tứ giác ABCD có DAB=DCB=90.Vẽ DE vuông góc với AC tại E,BF vuông góc với AC tại F.cmr AE=CF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
BC2=AB2+AC2BC2=AB2+AC2
⇔BC2=62+82=100⇔BC2=62+82=100
hay BC=10(cm)
Vậy: BC=10cm
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/4
BC=10cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó: BD=30/7(cm); CD=40/7(cm)
b: Xét ΔABC có DE//AC
nên DE/AC=BD/BC
=>DE/8=3/7
hay DE=24/7(cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
xét tam giác CFB ta có :
CA vuông BF ( gt ) => CA là đường cao của tam giác CFB
DE vuông BC ( gt ) => FE vuông CB => FE là đường cao tam giác CFB
mà đường cao CA cắt đường cao FE tại D => D là trực tâm của tam giác CFB
=> BD là đường cao thứ 3 của tam giác CFB => BD vuông CF
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật