Tìm x biết:
2(x - 1) - 3(x - 2) = 5x - 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 , <=> 25x^2 + 10x + 1 - ( 25x^2 - 9) = 30
<=> 25x^2 + 10x + 1 - 25x^2 + 9 = 30
<=> 10x + 10 = 30
<=> 10 ( x + 1) = 30
<=> x + 1 = 3
<=> x = 2
2, ( x + 3)(x^2 - 3x + 9 ) - x(x+2)(x-2) = 15
<=> x^3 - 27 - x(x^2 - 4) = 15
<=> x^3 - 27 - x^3 + 4x = 15
<=> 4x -27 = 15
<=> 4x = 15 + 27
<=> 4x =42
<=> x = 42/4 = 21/2
******************
a) \(\Rightarrow5x^2-15x=5x^2-x-10x+2-5\)
\(\Rightarrow5x^2-15x-5x^2+x+10x=2-5\)
\(\Rightarrow-4x=-3\)
\(\Rightarrow x=\frac{3}{4}\)
Vậy \(x=\frac{3}{4}\)
b) \(\Rightarrow x^2-4x-5x+20-x^2+2x-x+2=7\)
\(\Rightarrow x^2-4x-5x-x^2+2x-x=7-20-2\)
\(\Rightarrow-8x=-15\)
\(\Rightarrow x=\frac{15}{8}\)
Vậy \(x=\frac{15}{8}\)
c) \(\Rightarrow3x^2-6x-4x+8=3x^2-27x-3\)
\(\Rightarrow3x^2-6x-4x-3x^2+27x=-3-8\)
\(\Rightarrow17x=-11\)
\(\Rightarrow x=\frac{-11}{17}\)
Vậy \(x=\frac{-11}{17}\)
Chúc bạn học tốt.
a, 5x . (x - 3) + x - 3 = 0
<=> 5x . (x - 3) + (x - 3) = 0
<=> (x - 3)(5x + 1) = 0
<=> x - 3 = 0 hoặc 5x + 1 = 0
<=> x = 3 5x = -1
<=> x = 3 x = -1/5
Vậy...
b, (x + 2)2 + (x - 3)2 - 2(x - 1)(x + 1) = 9
<=> x2 + 4x + 4 + x2 - 6x + 9 - 2(x2 - 12) = 9
<=> 2x2 - 2x + 13 - 2x2 + 2 = 9
<=> -2x + 15 = 9
<=> -2x = -6
<=> x = 3
\(\frac{x-1}{3}+\frac{3x-5}{2}+\frac{2x}{9}+\frac{-5x+3}{9}=\frac{210}{420}\)
\(\Leftrightarrow\frac{x-1}{3}+\frac{3x-5}{2}+\frac{-3x+3}{9}=\frac{1}{2}\)
\(\Leftrightarrow\frac{6\left(x-1\right)}{18}+\frac{9\left(3x-5\right)}{18}+\frac{2\left(-3x+3\right)}{18}=\frac{9}{18}\)
\(\Rightarrow6x-6+27x-45-6x+6=9\)
\(\Leftrightarrow6x+27x-6x=9+6+45-6\)
\(\Leftrightarrow27x=54\)
\(\Rightarrow x=2\)
a: ĐKXĐ: x>=2/3
\(\dfrac{x-2}{\sqrt{3x-2}+2}=9\)
=>\(x-2=9\sqrt{3x-2}+18\)
=>\(9\sqrt{3x-2}=x-2-18=x-20\)
=>\(\Leftrightarrow\left\{{}\begin{matrix}x>=20\\81\left(3x-2\right)=x^2-40x+400\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=20\\x^2-40x+400-243x+162=0\end{matrix}\right.\)
=>x>=20 và x^2-283x+562=0
=>x=281(nhận) hoặc x=2(loại)
b: ĐKXĐ: x>=2/5
\(\sqrt{5x-2}=9\)
=>5x-2=81
=>5x=83
=>x=83/5
c: ĐKXĐ: x>=-1; x<>8
\(\dfrac{2x-16}{\sqrt{x+1}-3}=5\)
=>\(2x-16=5\sqrt{x+1}-15\)
=>\(\sqrt{25x+25}=2x-16+15=2x-1\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\4x^2-4x+1=25x+25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\4x^2-29x-24=0\end{matrix}\right.\)
=>x=8(nhận) hoặc x=-3/4(loại)
( 2 3/4 - 1 4/5 ) x = 1
=> ( 11/4 - 9/5 ) x = 1
=> 19/20 x = 1
=> x = 1 : 19/20
=> x = 20/19
x^2 - 9 .( 3 - 5x ) = 0
=> x^-7 . ( 3 - 5x ) = 0
=> x^-7 = 0 hoặc 3 - 5x = 0
=> Mà x^-7 = 0 => x loại
=> 3 - 5x = 0
=> 5x = 3 - 0 = 3
=> x = 3 : 5
=> x = 3/5
Bài 3:
a: \(x^2-16=\left(x-4\right)\cdot\left(x+4\right)\)
b: \(x^2+2x+1-y^2=\left(x+1+y\right)\left(x+1-y\right)\)
c: \(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
a) Ta có: \(x^2-2x+1=25\)
\(\Leftrightarrow\left(x-1\right)^2=25\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b) Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
c) Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
d) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
a,\(< =>\left(x-1\right)^2-5^2=0< =>\left(x-1-5\right)\left(x-1+5\right)=0\)
\(< =>\left(x-6\right)\left(x+4\right)=0=>\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
b,\(< =>25x^2+10x+1-25x^2+9-30=0\)
\(< =>10x-20=0< =>10\left(x-2\right)=0< =>x=2\)
c,\(< =>x^3-1-x\left(x^2-4\right)-5=0\)
\(< =>x^3-1-x^2+4x-5=0< =>4x-6=0< =>x=\dfrac{6}{4}\)\(d,< =>\left(x-2\right)^3-x^3+3^3+6x^2+12x+6-15=0\)
\(< =>x^3-6x^2+12x-x^3+6x^2+12x+10=0\)
\(< =>24x+10=0< =>x=-\dfrac{5}{12}\)
a: Ta có: \(x^2-2x+1=25\)
\(\Leftrightarrow\left(x-4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)
b: Ta có: \(\left(5x+1\right)^2-\left(5x-3\right)\left(5x+3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25x^2+9=30\)
\(\Leftrightarrow10x=20\)
hay x=2
c: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(\Leftrightarrow x^3-1-x\left(x^2-4\right)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)
Mình sửa bài nhé.
\(2.\left(x-1\right)-3.\left(x-2\right)=5x-9\)
\(\Rightarrow2x-2-3x+6-5x=-9\)
\(\Rightarrow\left(2x-3x-5x\right)+\left(-2+6\right)=-9\)
\(\Rightarrow-6x+4=-9\)
\(\Rightarrow-6x=-13\)
\(\Rightarrow x=\frac{13}{6}\)
\(2.\left(x-1\right)-3.\left(x-2\right)=5x-9\)
\(\Rightarrow2x-2-3x-2=5x-9\)
\(\Rightarrow2x-2-3x-2-5x+9=0\)
\(\Rightarrow-6x+5=0\)
\(\Rightarrow-6x=-5\)
\(\Rightarrow x=\frac{5}{6}\)