K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

help me!!!!!!!!!!!!!!

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

b) 

Ta có: ΔAHB=ΔAHC(cmt)

nên HB=HC(hai cạnh tương ứng)

mà B,H,C thẳng hàng(gt)

nên H là trung điểm của BC

Xét ΔABC có 

H là trung điểm của BC(cmt)

HD//AC(gt)

Do đó: D là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

Ta có: ΔAHB vuông tại H(gt)

mà HD là đường trung tuyến ứng với cạnh huyền AB(D là trung điểm của AB)

nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

nên HD=AD

Xét ΔADH có HD=AD(cmt)

nên ΔADH cân tại D(Định nghĩa tam giác cân)

a: BD\(\perp\)BA

CA\(\perp\)BA

Do đó: BD//CA

Xét ΔEAC có BD//AC

nên \(\dfrac{EB}{BA}=\dfrac{ED}{DC}\)

b:

AC//BD

BD//IK

Do đó: AC//IK

Xét ΔAEI có BD//EI

nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\)(1)

Xét ΔCEK có DB//EK

nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\left(2\right)\)

\(\dfrac{EB}{EA}=\dfrac{DE}{DC}\)

=>\(\dfrac{EB+EA}{EA}=\dfrac{DE+DC}{DC}\)

=>\(\dfrac{AB}{EA}=\dfrac{CE}{DC}\)(3)

Từ (1),(2),(3) suy ra \(\dfrac{DB}{EI}=\dfrac{DB}{EK}\)

=>EI=EK

 

a: Xét ΔBHA vuông tại H có 

\(BA^2=BH^2+HA^2\)

hay AH=3(cm)

b: Xét ΔABH vuông tại H và ΔCBH vuông tại H có 

BA=BC

BH chung

Do đó: ΔABH=ΔCBH

c: Xét ΔBIH vuông tại I và ΔBKH vuông tại K có 

BH chung

\(\widehat{IBH}=\widehat{KBH}\)

Do đó: ΔBIH=ΔBKH

Suy ra: HI=HK

d: Xét ΔBAC có BI/BA=BK/BC

Do đó: IK//AC

16 tháng 2 2021

Cho mk xin hình luôn nhé 

16 tháng 2 2021

- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AC^2+5^2=13^2\)

\(\Rightarrow AC=12\left(cm\right)\)

- Xét tam giác BHA và tam giác BAC có : \(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{B}\left(chung\right)\end{matrix}\right.\)

=> Hai tam giác trên đồng dạng .

=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)

=> \(BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\)

=> \(CH=BC-BH=\dfrac{144}{13}\left(cm\right)\)

- Áp dụng định lý pi ta go vào tam giác ABH vuông tại H ta được :

\(AH^2+BH^2=AB^2\)

\(\Rightarrow AH=\dfrac{60}{13}\left(cm\right)\)

Vậy ...

30 tháng 3 2021

A B C H D

30 tháng 3 2021

a)

Xét \(\Delta ABC\) và \(\Delta HBA\) có:

           \(\widehat{B}:chung\)

      \(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)           \(\left(ĐPCM\right)\)