K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2020

Đề câu a) sai sai ,tại sao x - 10 > 20 rồi thì tương đương là x - 2 > 20 ( em mới học lớp 6 thoi nha cj nên ngôn ngữ diễn tả không hay cho lắm  ) ,sửa đề : " Cho x - 10 > 12 .Chứng minh x - 2 > 20 " 

Bài giải 

a) Ta có : x - 10 > 12

<=>x - 10 + 8   > 12 + 8

<=> x - 2       > 20 ( đpcm )

b) Ta có : x + 5 < 14

<=> x + 5 - 10 < 14 - 10 

<=> x - 5 < 4 ( đpcm ) 

20 tháng 4 2020

Tham khảo bài giải của mình tại link sau : 

https://olm.vn/hoi-dap/detail/252048099077.html 

23 tháng 4 2018

1 . a) Thực hiện so sánh 3a và 3b, 3a+1 và 3b+1 từ đó rút ra điêu cần chứng minh

b) Thực hiện so sánh -2a và -2b, -2a - 5 và -2b -5 từ đó rút ra điêu cần chứng minh

Cậu tự trình bày nhé ? Giảng sơ sơ thế là hiểu ấy

3 tháng 7 2017

Bài 2:

a) Áp dụng BĐT AM - GM ta có:

\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)

\(\ge\dfrac{1}{a+b}\) (Đpcm)

b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:

\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)

\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)

3 tháng 7 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)

Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)

\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)

\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng

1) \(x-5=x-10+15>x-10\)

2) \(x+3=x-2+5>x-2\)

3) \(x+5< x+5+3=x+8\)

\(\Rightarrowđpcm\)

16 tháng 8 2019

đạt được tận hơn 26 điểm thi

2 ae mik vào a1 rồi

chú nguyên chụp cho tuấn và chú bảo vào a1 rồi

27 tháng 7 2019

rất khó nhưng vì bạn cần giúp nên mới làm đấy:

1. vì x-10>x-5 nên x-5<x-10

2. vì x < 2x nên x + 3 > x - 2

3. vì y = x nên x + 5 < x +8

27 tháng 7 2019

_Em mới lớp 7 nên chị không biết có giúp em được theo kiểu giải bất phương trình của lớp 8 hay không?