K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2021

3(2x+y)-2(3x-2y)=3.19-11.2

6x+3y-6x+4y=57-22

7y=35

y=5

thay vào :

2x+y=19

2x+5=19

2x=14

x=7

2/ x2+21x-1x-21=0

x(x+21)-1(x+21)=0

(x+21)(x-1)=0

TH1 x+21=0

x=-21

TH2 x-1=0

x=1

vậy x = {-21} ; {1}

3/ x4-16x2-4x2+64=0

x2(x2-16)-4(x2-16)=0

(x2-16)-(x2-4)=0

TH1 x2-16=0

x2=16

<=>x=4;-4

TH2 x2-4=0

x2=4

x=2;-2

18 tháng 5 2021

Bài 1 : 

\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=38\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}7x=49\\2x+y=19\end{cases}}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\2x+y=19\end{cases}}\)Thay vào x = 7 vào pt 2 ta được : 

\(14+y=19\Leftrightarrow y=5\)Vậy hệ pt có một nghiệm ( x ; y ) = ( 7 ; 5 )

Bài 2 : 

\(x^2+20x-21=0\)

\(\Delta=400-4\left(-21\right)=400+84=484\)

\(x_1=\frac{-20-22}{2}=-24;x_2=\frac{-20+22}{2}=1\)

Bài 3 : Đặt \(x^2=t\left(t\ge0\right)\)

\(t^2-20t+64=0\)

\(\Delta=400+4.64=656\)

\(t_1=\frac{20+4\sqrt{41}}{2}\left(tm\right);t_2=\frac{20-4\sqrt{41}}{2}\left(ktm\right)\)

Theo cách đặt : \(x^2=\frac{20+4\sqrt{41}}{2}\Rightarrow x=\sqrt{\frac{20+4\sqrt{41}}{2}}=\frac{\sqrt{20\sqrt{2}+4\sqrt{82}}}{2}\)

8 tháng 7 2018

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

25 tháng 2 2022

a,\(\left(x-4-5\right)\left(x-4+5\right)=0\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\Leftrightarrow x=9;x=-1\)

b, \(\left(x-3-x-1\right)\left(x-3+x+1\right)=0\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

c, \(\left(x^2-4\right)\left(2x-3\right)-\left(x^2-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x-3-x+1\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-2\right)=0\Leftrightarrow x=-2;x=2\)

d, \(\left(3x-7\right)^2-\left(2x+2\right)^2=0\Leftrightarrow\left(3x-7-2x-2\right)\left(3x-7+2x+2\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(5x-5\right)=0\Leftrightarrow x=1;x=9\)

25 tháng 2 2022

a) Ta có: 4x-20=0

4x=20⇔4x=20

hay x=5

Vậy: S={5}

b) Ta có: 2x+x+12=02x+x+12=0

3x+12=0⇔3x+12=0

3x=12⇔3x=−12

hay x=-4

18 tháng 3 2022

\(a,4+3x=25-4x\\ \Leftrightarrow7x=21\\ \Leftrightarrow x=3\\ b,\left(x-1\right)^2+\left(x-1\right)\left(x+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-1+x+3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(2x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

c, ĐKXĐ:\(x\ne-1,x\ne2\)

\(\dfrac{1}{x+1}+\dfrac{3}{x-2}=\dfrac{9}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{x-2}{\left(x+1\right)\left(x-2\right)}+\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{9}{\left(x+1\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{x-2+3x+3-9}{\left(x+1\right)\left(x-2\right)}=0\\ \Rightarrow4x-8=0\\ \Leftrightarrow x=2\left(ktm\right)\)

18 tháng 3 2022

\(a,2x-5=-x+4\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\\ b,\left(4x-10\right)\left(25+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x-10=0\\25+5x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-5\end{matrix}\right.\\ c,\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-x\\ \Leftrightarrow\dfrac{2x}{6}-\dfrac{3\left(2x+1\right)}{6}-\dfrac{x}{6}+\dfrac{6x}{6}=0\\ \Leftrightarrow2x-6x-3-x+6x=0\\ \Leftrightarrow x-3=0\\ \Leftrightarrow x=3\)

d, ĐKXĐ:\(x\ne-2,x\ne3\)

\(1+\dfrac{x}{3-x}=\dfrac{5x}{\left(x+2\right)\left(3-x\right)}+\dfrac{2}{x+2}\\ \Leftrightarrow\dfrac{\left(x+2\right)\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}+\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(3-x\right)}-\dfrac{5x}{\left(x+2\right)\left(3-x\right)}-\dfrac{2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=0\\ \Leftrightarrow\dfrac{-x^2+x+6}{\left(x+2\right)\left(3-x\right)}+\dfrac{x^2+2x}{\left(x+2\right)\left(3-x\right)}-\dfrac{5x}{\left(x+2\right)\left(3-x\right)}-\dfrac{6-2x}{\left(x+2\right)\left(3-x\right)}=0\)

\(\Leftrightarrow\dfrac{-x^2+x+6+x^2+2x-5x-6+2x}{\left(x+2\right)\left(3-x\right)}=0\\ \Rightarrow0=0\left(luôn.đúng\right)\)

1 tháng 2 2021

cấy pt dạng ni lớp 8 học rồi mà :v 

chỉ là thêm công thức nghiệm vào thôi ._.

1. ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 16 = 0

<=> [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ] + 16 = 0

<=> ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 16 = 0

Đặt t = x2 + 10x + 16

pt <=> t( t + 8 ) + 16 = 0

<=> t2 + 8t + 16 = 0

<=> ( t + 4 )2 = 0

<=> ( x2 + 10x + 16 + 4 )2 = 0

<=> ( x2 + 10x + 20 )2 = 0

=> x2 + 10x + 20 = 0

Δ' = b'2 - ac = 25 - 20 = 5

Δ' > 0 nên phương trình có hai nghiệm phân biệt

\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-5+\sqrt{5}\)

\(x_2=\frac{-b'-\sqrt{\text{Δ}'}}{a}=-5-\sqrt{5}\)

Vậy ...

2. ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 24 = 0

<=> [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 24 = 0

<=> ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 24 = 0

Đặt t = x2 + 5x + 4

pt <=> t( t + 2 ) - 24 = 0

<=> t2 + 2t - 24 = 0

<=> ( t - 4 )( t + 6 ) = 0

<=> ( x2 + 5x + 4 - 4 )( x2 + 5x + 4 + 6 ) = 0

<=> x( x + 5 )( x2 + 5x + 10 ) = 0

Vì x2 + 5x + 10 có Δ = -15 < 0 nên vô nghiệm

=> x = 0 hoặc x = -5

Vậy ...

3. ( x - 1 )( x - 3 )( x - 5 )( x - 7 ) - 20 = 0

<=> [ ( x - 1 )( x - 7 ) ][ ( x - 3 )( x - 5 ) ] - 20 = 0

<=> ( x2 - 8x + 7 )( x2 - 8x + 15 ) - 20 = 0

Đặt t = x2 - 8x + 7

pt <=> t( t + 8 ) - 20 = 0

<=> t2 + 8t - 20 = 0

<=> ( t - 2 )( t + 10 ) = 0

<=> ( x2 - 8x + 7 - 2 )( x2 - 7x + 8 + 10 ) = 0

<=> ( x2 - 8x + 5 )( x2 - 7x + 18 ) = 0

<=> \(\orbr{\begin{cases}x^2-8x+5=0\\x^2-7x+18=0\end{cases}}\)

+) x2 - 8x + 5 = 0

Δ' = b'2 - ac = 16 - 5 = 11

Δ' > 0 nên có hai nghiệm phân biệt 

\(x_1=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4+\sqrt{11}\)

\(x_2=\frac{-b'+\sqrt{\text{Δ}'}}{a}=-4-\sqrt{11}\)

+) x2 - 7x + 18 = 0

Δ = b2 - 4ac = 49 - 72 = -23 < 0 => vô nghiệm

Vậy ...

1 tháng 2 2021

1.(x+2) . (x+4) . (x+6) . (x+8) + 16 = 0

(x+2) . (x+4) . (x+6) . (x+8)         = -16

x. ( 2 + 4 + 6 + 8 )                    = -16

x. 20                                         = -16

x4                                                          = -16 : 20 

x                                               = -4 / 5       

x                                                  = \(\sqrt[4]{\frac{-4}{5}}\)

Tk cho mình nhé !!

23 tháng 2 2023

a: =>(2x-5x-1)(2x+5x+1)=0

=>(-3x-1)(7x+1)=0

=>x=-1/3 hoặc x=-1/7

b: =>(5x-5)^2-(x+2)^2=0

=>(5x-5-x-2)(5x-5+x+2)=0

=>(4x-7)(6x-3)=0

=>x=1/2 hoặc x=7/4

c: =>(x^2+4x-1-x^2+3x-2)(x^2+4x-1+x^2-3x+2)=0

=>(7x-3)(2x^2+x+1)=0

=>7x-3=0

=>x=3/7

5 tháng 2 2016

<=> 20(x - 2)/(x - 1) - 5(x + 2)²/(x- 1)² + 48(x² - 4) / (x-1)(x+1) = 0 
Điều kiện : 
{ x- 1 # 0 
{ x+1 # 0 

{ x # 1 
{ x # -1 

=> 20(x-2)(x+1)(x-1) - 5(x+2)²(x + 1) + 48(x² - 4)(x - 1) = 0 
<=> 20(x-2)(x² - 1) - 5(x² + 4x+4)(x + 1) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20(x^3 - x - 2x² + 2) - 5(x^3 + x² + 4x² + 4x + 4x + 4 ) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20(x^3 - x - 2x² + 2) - 5(x^3 + 5x² + 8x + 4 ) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20x^3 - 20x - 40x² + 40 - 5x^3 - 25x² - 40x - 20 + 48x^3 - 48x² - 192x + 192 = 0 
<=> 63x^3 - 113x² - 252x + 212 = 0 

Ta có 
Δ = b² - 3ac = (-113)² - 3.63.(-252) = 60397 
k = 9abc - 2b^3 - 27a²d / 2√|Δ|^3 = -0,1241 

Vì Δ > 0 và |k| < 1 nên pt có 3 nghiệm 

x = 2√Δ.cos(arccos(k)/3 ) - b / 3a = 2,794 
x = 2√Δ.cos(arccos(k) + 2r/3 ) - b / 3a = -1,706 
x = 2√Δ.cos(arccos(k) - 2r/3 ) - b / 3a = 0,706

nha

Nguyễn Vũ Dũng mấy cái kí hiệu ở cuối là sao bạn? 

5 tháng 2 2016

<=> 20(x - 2)/(x - 1) - 5(x + 2)²/(x- 1)² + 48(x² - 4) / (x-1)(x+1) = 0 
Điều kiện : 
{ x- 1 # 0 
{ x+1 # 0 

{ x # 1 
{ x # -1 

=> 20(x-2)(x+1)(x-1) - 5(x+2)²(x + 1) + 48(x² - 4)(x - 1) = 0 
<=> 20(x-2)(x² - 1) - 5(x² + 4x+4)(x + 1) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20(x^3 - x - 2x² + 2) - 5(x^3 + x² + 4x² + 4x + 4x + 4 ) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20(x^3 - x - 2x² + 2) - 5(x^3 + 5x² + 8x + 4 ) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20x^3 - 20x - 40x² + 40 - 5x^3 - 25x² - 40x - 20 + 48x^3 - 48x² - 192x + 192 = 0 
<=> 63x^3 - 113x² - 252x + 212 = 0 

Ta có 
Δ = b² - 3ac = (-113)² - 3.63.(-252) = 60397 
k = 9abc - 2b^3 - 27a²d / 2√|Δ|^3 = -0,1241 

Vì Δ > 0 và |k| < 1 nên pt có 3 nghiệm 

x = 2√Δ.cos(arccos(k)/3 ) - b / 3a = 2,794 
x = 2√Δ.cos(arccos(k) + 2r/3 ) - b / 3a = -1,706 
x = 2√Δ.cos(arccos(k) - 2r/3 ) - b / 3a = 0,706

5 tháng 2 2016

c) 20(x - 2)/(x - 1) - 5(x + 2)²/(x- 1)² + 48(x² - 4)/(x² - 1) = 0 
<=> 20(x - 2)/(x - 1) - 5(x + 2)²/(x- 1)² + 48(x² - 4) / (x-1)(x+1) = 0 
Điều kiện : 
{ x- 1 # 0 
{ x+1 # 0 

{ x # 1 
{ x # -1 

=> 20(x-2)(x+1)(x-1) - 5(x+2)²(x + 1) + 48(x² - 4)(x - 1) = 0 
<=> 20(x-2)(x² - 1) - 5(x² + 4x+4)(x + 1) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20(x^3 - x - 2x² + 2) - 5(x^3 + x² + 4x² + 4x + 4x + 4 ) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20(x^3 - x - 2x² + 2) - 5(x^3 + 5x² + 8x + 4 ) + 48(x^3 - x² - 4x + 4) = 0 
<=> 20x^3 - 20x - 40x² + 40 - 5x^3 - 25x² - 40x - 20 + 48x^3 - 48x² - 192x + 192 = 0 
<=> 63x^3 - 113x² - 252x + 212 = 0 

Ta có 
Δ = b² - 3ac = (-113)² - 3.63.(-252) = 60397 
k = 9abc - 2b^3 - 27a²d / 2√|Δ|^3 = -0,1241 

Vì Δ > 0 và |k| < 1 nên pt có 3 nghiệm 

x = 2√Δ.cos(arccos(k)/3 ) - b / 3a = 2,794 
x = 2√Δ.cos(arccos(k) + 2r/3 ) - b / 3a = -1,706 
x = 2√Δ.cos(arccos(k) - 2r/3 ) - b / 3a = 0,706