Cho tam giác KFC (KF < KC) nội tiếp (O;R), đường cao KH. Vẽ HN vuông góc với KC tại N , HM vuông góc KF tại M . Gọi I là trung điểm của KH và qua I vẽ đường thẳng song song với KC cắt HC tại V . Giả sử KH = R \(\sqrt{2}\). Chứng minh M , O , N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi S' là giao điểm của TV và FC
Ta sẽ chứng minh S trùng với S' bằng cách chứng minh HS' và HS cùng vuông góc với FC.
Thật vậy:
\(\Delta FTV\)cân tại F nên \(\widebat{FT}=\widebat{FV}\)
Do đó \(\widehat{FCV}=\widehat{FVS'}\)
Từ đó suy ra \(\Delta FCV~\Delta FVS'\left(g.g\right)\)
Suy ra \(FS'.FC=FV^2\)
Mà FV = FH nên \(FS'.FC=FH^2\)
Từ đó suy ra \(\Delta FS'H~\Delta FHC\left(c-g-c\right)\)
\(\Rightarrow\widehat{FS'H}=\widehat{FHC}=90^0\)
\(\Rightarrow HS'\perp FC\)
Dễ dàng chứng minh được \(HS\perp FC\)
Lúc đó thì S trùng S'
Vậy T, V, S thẳng hàng (đpcm)
Dễ thấy \(\widehat{HKF}=\widehat{HCM}\) (cùng phụ với \(\widehat{ABC}\))
Xét tam giác HKF và HCM, có: \(\widehat{KHF}=\widehat{CHM}\left(=90^o\right)\) và \(\widehat{HKF}=\widehat{HCM}\) (cmt)
Suy ra \(\Delta HKF~\Delta HCM\left(g.g\right)\)
\(\Rightarrow\dfrac{HK}{HC}=\dfrac{HF}{HM}\) \(\Rightarrow HK.HM=HC.HF\)
Mà \(HC.HF\le\dfrac{\left(HC+HF\right)^2}{4}=\dfrac{FC^2}{4}\) (BĐT Cô-si), suy ra \(HK.HM\le\dfrac{FC^2}{4}\) (đpcm)
Dấu "=" xảy ra \(\Leftrightarrow HC=HF\) \(\Leftrightarrow\) H là trung điểm CF \(\Leftrightarrow\Delta KFC\) cân tại K.
O A B C D E F H K P Q x y S T
a, Xét tứ giác BFEC có ^BFC = ^BEC = 90o
=> Tứ giác BFEC nội tiếp
Xét tứ giác CEHD có ^CEH = ^CDH = 90o
=> tứ giác CEHD nội tiếp
b, Tứ giác BFEC nội tiếp => ^AFE = ^ACB
Mà ^ACB = ^BAx (góc tạo bởi tia tiếp tuyến và dây cung)
=> ^AFE = ^BAx
=> xy // EF (so le trong)
Mà OA _|_ xy (tiếp tuyến)
=> OA _|_ EF
hay OA _|_ PQ
*Vì AQCB nội tiếp
=> ^AQC + ^ABC = 180o (1)
Và ^AEF = ^ABC (2)
Lại có ^AEF + ^AEQ = 180o (3)
Từ (1) ; (2) và (3) => ^AEQ = ^AQC
Còn câu c mình chưa nghĩ ra , có lẽ là chứng minh tứ giác CEPT nội tiếp ...